A new rotating black hole in quintessential dark energy and its thermodynamics

  • Yue Wang
  • Chen-Hao Wu
  • Rui-Hong YueEmail author


The spacetime metric for a rotating black hole in a quintessential field can take various forms owing to the ambiguity of the state equation for quintessential dark energy in rotating spacetime. Herein, to provide a more physical solution, the metric is determined by imposing the laws of thermodynamics of a black hole, which is typically valid in most systems. The new metric ensures the validity of the first and second laws of thermodynamics and can degenerate to the known non-rotating metric in the quintessential field. Moreover, we set an upper limit for the black hole rotation parameter, a, in our metric according to the weak energy condition (WEC).

rotating black holes in quintessential field thermodynamics weak energy condition 


  1. 1.
    A. G. Riess, L. G. Strolger, J. Tonry, S. Casertano, H. C. Ferguson, B. Mobasher, P. Challis, A. V. Filippenko, S. Jha, W. Li, R. Chornock, R. P. Kirshner, B. Leibundgut, M. Dickinson, M. Livio, M. Giavalisco, C. C. Steidel, T. Benitez, and Z. Tsvetanov, Astrophys. J. 607, 665 (2004).CrossRefGoogle Scholar
  2. 2.
    P. J. E. Peebles, and B. Ratra, Rev. Mod. Phys. 75, 559 (2003).CrossRefGoogle Scholar
  3. 3.
    E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006).CrossRefGoogle Scholar
  4. 4.
    E. Komatsu, K. M. Smith, J. Dunkley, C. L. Bennett, B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M. R. Nolta, L. Page, D. N. Spergel, M. Halpern, R. S. Hill, A. Kogut, M. Limon, S. S. Meyer, N. Odegard, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright, Astrophys. J. Suppl. Ser. 192, 18 (2011), arXiv: 1001.4538.Google Scholar
  5. 5.
    S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).CrossRefGoogle Scholar
  6. 6.
    T. Padmanabhan, Phys. Rep. 380, 235 (2003).MathSciNetCrossRefGoogle Scholar
  7. 7.
    G. B. Zhao, J. Q. Xia, X. M. Zhang, and B. Feng, Int. J. Mod. Phys. D 16, 1229 (2007).CrossRefGoogle Scholar
  8. 8.
    J. Q. Xia, H. Li, G. B. Zhao, and X. Zhang, Phys. Rev. D 78, 083524 (2008), arXiv: 0807.3878.CrossRefGoogle Scholar
  9. 9.
    J. Q. Xia, H. Li, G. B. Zhao, and X. Zhang, Phys. Rev. D 78, 083524 (2008), arXiv: 0807.3878.CrossRefGoogle Scholar
  10. 10.
    G. W. Gibbons, M. J. Perry, and C. N. Pope, Class. Quantum Grav. 22, 1503 (2005).CrossRefGoogle Scholar
  11. 11.
    I. Papadimitriou, and K. Skenderis, J. High Energy Phys. 2005(08), 004 (2005).CrossRefGoogle Scholar
  12. 12.
    J. J. Guo, J. F. Zhang, Y. H. Li, D. Z. He, and X. Zhang, Sci. China-Phys. Mech. Astron. 61, 030011 (2018), arXiv: 1710.03068.CrossRefGoogle Scholar
  13. 13.
    Y. Zhong, C. E. Fu, and Y. X. Liu, Sci. China-Phys. Mech. Astron. 61, 090411 (2018).CrossRefGoogle Scholar
  14. 14.
    V. V. Kiselev, arXiv: gr-qc/0303031.Google Scholar
  15. 15.
    S. Nojiri, and S. D. Odintsov, Phys. Rev. D 68, 123512 (2003).CrossRefGoogle Scholar
  16. 16.
    C. Armendáriz-Picón, T. Damour, and V. Mukhanov, Phys. Lett. B 458, 209 (1999).MathSciNetCrossRefGoogle Scholar
  17. 17.
    S. Tsujikawa, and M. Sami, J. Cosmol. Astropart. Phys. 2007(01), 006 (2007).CrossRefGoogle Scholar
  18. 18.
    L. Gergely, Phys. Rev. D 78, 084006 (2008), arXiv: 0806.3857.MathSciNetCrossRefGoogle Scholar
  19. 19.
    V. V. Kiselev, Class. Quantum Grav. 20, 1187 (2003).CrossRefGoogle Scholar
  20. 20.
    B. Toshmatov, Z. Stuchlík, and B. Ahmedov, Eur. Phys. J. Plus 132, 98 (2017).CrossRefGoogle Scholar
  21. 21.
    Z. Xu, and J. Wang, Phys. Rev. D 95, 064015 (2017), arXiv: 1609.02045.MathSciNetCrossRefGoogle Scholar
  22. 22.
    J. Schee, and Z. Stuchlík, Eur. Phys. J. C 76, 643 (2016), arXiv: 1606.09037.CrossRefGoogle Scholar
  23. 23.
    Kh. Jafarzade, and J. Sadeghi, arXiv: 1710.08642.Google Scholar
  24. 24.
    A. Zakria, and A. Afzal, arXiv: 1808.04361.Google Scholar
  25. 25.
    P. T. Chrusciel, E. Delay, G. J. Galloway, and R. Howard, arXiv: grqc/0001003.Google Scholar
  26. 26.
    M. Visser, Lorentzian Wormholes: From Einstein to Hawking (Springer-Verlag, New York, 1995).Google Scholar
  27. 27.
    T. Jacobson, and T. P. Sotiriou, J. Phys.-Conf. Ser. 222, 012041 (2010), arXiv: 1006.1764.CrossRefGoogle Scholar
  28. 28.
    Z. Li, and C. Bambi, Phys. Rev. D 87, 124022 (2013), arXiv: 1304.6592.CrossRefGoogle Scholar
  29. 29.
    R. Wald, Ann. Phys. 82, 548 (1974).CrossRefGoogle Scholar
  30. 30.
    P. S. Joshi, Gravitational Collapse adb Spacetime Singularities (Cambridge University Press, Cambridge, 2007).CrossRefzbMATHGoogle Scholar
  31. 31.
    H. M. Siahaan, Phys. Rev. D 93, 064028 (2016), arXiv: 1512.01654.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Y. Song, M. Zhang, D. C. Zou, C. Y. Sun, and R. H. Yue, Commun. Theor. Phys. 69, 694 (2018), arXiv: 1705.01676.CrossRefGoogle Scholar
  33. 33.
    A. Magnon, J. Math. Phys. 26, 3112 (1985).MathSciNetCrossRefGoogle Scholar
  34. 34.
    M. Henneaux, and C. Teitelboim, Phys. Lett. B 142, 355 (1984).MathSciNetCrossRefGoogle Scholar
  35. 35.
    J. D. Brown, and J. W. York, Phys. Rev. D 47, 1407 (1993).MathSciNetCrossRefGoogle Scholar
  36. 36.
    N. Deruelle, arXiv: gr-qc/0502072.Google Scholar
  37. 37.
    M. Henningson, and K. Skenderis, Fortschr. Phys. 48, 125 (2000).MathSciNetCrossRefGoogle Scholar
  38. 38.
    V. Balasubramanian, and P. Kraus, Commun. Math. Phys. 208, 413 (1999).CrossRefGoogle Scholar
  39. 39.
    S. de Haro, K. Skenderis, and S. N. Solodukhin, Commun. Math. Phys. 217, 595 (2001).CrossRefGoogle Scholar
  40. 40.
    K. Skenderis, Int. J. Mod. Phys. A 16, 740 (2001).MathSciNetCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Gravitation and Cosmology, College of Physical Science and TechnologyYangzhou UniversityYangzhouChina

Personalised recommendations