Advertisement

Preparation of pseudo-pure states for NMR quantum computing with one ancillary qubit

  • Tao Xin
  • Liang Hao
  • Shi-Yao Hou
  • Guan-Ru Feng
  • Gui-Lu LongEmail author
Article
  • 43 Downloads

Abstract

Quantum state preparation plays an equally important role as quantum operations and measurements in quantum information processing. The previous methods for initialization require either an exponential number of experiments, or cause signal reduction or place restrictions on molecular structures. In this study, we propose three types of quantum circuits for preparing the pseudo-pure states of (n − 1) qubits in the n-coupled Hilbert space, which simply needs the assistance of one ancilla spin and two different experiments independent of n. Most importantly, our methods work well on homo-nuclear and hetero-nuclear molecules without the reduction of signals in the gradient field. As a proof-of-principle demonstration, we experimentally prepared the pseudo-pure states of heteronuclear 2-qubit and homonuclear 4-qubit molecules using a nuclear magnetic resonance quantum information processor.

quantum state preparation nuclear magnetic resonance quantum algorithms 

References

  1. 1.
    D. R. Simon, SIAM J. Comput. 26, 1474 (1997).MathSciNetCrossRefGoogle Scholar
  2. 2.
    P. W. Shor, SIAM J. Comput. 26, 1484 (1997).MathSciNetCrossRefGoogle Scholar
  3. 3.
    L. K. Grover, Phys. Rev. Lett. 79, 4709 (1997).ADSCrossRefGoogle Scholar
  4. 4.
    A. Ekert, and R. Jozsa, Rev. Mod. Phys. 68, 733 (1996).ADSCrossRefGoogle Scholar
  5. 5.
    I. L. Chuang, N. Gershenfeld, and M. Kubinec, Phys. Rev. Lett. 80, 3408 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    D. P. DiVincenzo, Science 270, 255 (1995).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    C. H. Bennett, and D. P. DiVincenzo, Nature 404, 247 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    M. A. Nielsen, and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).zbMATHGoogle Scholar
  9. 9.
    R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, and C. F. Roos, Nature 463, 68 (2010), arXiv: 0909.0674.ADSCrossRefGoogle Scholar
  10. 10.
    L. Lamata, J. León, T. Schätz, and E. Solano, Phys. Rev. Lett. 98, 253005 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    Y. S. Weinstein, S. Lloyd, J. Emerson, and D. G. Cory, Phys. Rev. Lett. 89, 157902 (2002).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    D. Lu, N. Xu, R. Xu, H. Chen, J. Gong, X. Peng, and J. Du, Phys. Rev. Lett. 107, 020501 (2011), arXiv: 1105.4228.ADSCrossRefGoogle Scholar
  13. 13.
    A. Aspuru-Guzik, Science 309, 1704 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    J. Du, N. Xu, X. Peng, P. Wang, S. Wu, and D. Lu, Phys. Rev. Lett. 104, 030502 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    S. J. Wei, T. Xin, and G. L. Long, Sci. China-Phys. Mech. Astron. 61, 070311 (2018), arXiv: 1706.08080.ADSCrossRefGoogle Scholar
  16. 16.
    D. S. Abrams, and S. Lloyd, Phys. Rev. Lett. 83, 5162 (1999).ADSCrossRefGoogle Scholar
  17. 17.
    A. W. Harrow, A. Hassidim, and S. Lloyd, Phys. Rev. Lett. 103, 150502 (2009), arXiv: 0811.3171.ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).ADSCrossRefGoogle Scholar
  19. 19.
    D. Loss, and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).ADSCrossRefGoogle Scholar
  20. 20.
    A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, Phys. Rev. Lett. 74 4083 (1995).ADSCrossRefGoogle Scholar
  21. 21.
    B. E. Kane, Nature 393 133 (1998).ADSCrossRefGoogle Scholar
  22. 22.
    A. Shnirman, G. Schön, and Z. Hermon, Phys. Rev. Lett. 79, 2371 (1997).ADSCrossRefGoogle Scholar
  23. 23.
    D. G. Cory, A. F. Fahmy, and T. F. Havel, Proc. Natl. Acad. Sci. USA 94, 1634 (1997).ADSCrossRefGoogle Scholar
  24. 24.
    N. A. Gershenfeld, and I. L. Chuang, Science 275, 350 (1997).MathSciNetCrossRefGoogle Scholar
  25. 25.
    X. Y. Pan, Sci. China-Phys. Mech. Astron. 60, 020333 (2017).ADSCrossRefGoogle Scholar
  26. 26.
    S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Haffner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, Nature 421, 48 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    F. Mintert, and C. Wunderlich, Phys. Rev. Lett. 87, 257904 (2001).ADSCrossRefGoogle Scholar
  28. 28.
    H. Li, Y. Liu, and G. L. Long, Sci. China-Phys. Mech. Astron. 60, 080311 (2017), arXiv: 1703.10348.ADSCrossRefGoogle Scholar
  29. 29.
    X. Peng, X. Zhu, X. Fang, M. Feng, M. Liu, and K. Gao, J. Chem. Phys. 120, 3579 (2004).ADSCrossRefGoogle Scholar
  30. 30.
    D. G. Cory, M. D. Price, and T. F. Havel, Phys. D-Nonlinear Phenom. 120, 82 (1998).ADSCrossRefGoogle Scholar
  31. 31.
    E. Knill, I. Chuang, and R. Laflamme, Phys. Rev. A 57, 3348 (1998).ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    L. M. K. Vandersypen, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, Phys. Rev. Lett. 83, 3085 (1999).ADSCrossRefGoogle Scholar
  33. 33.
    E. Knill, R. Laflamme, R. Martinez, and C. H. Tseng, Nature 404, 368 (2000).ADSCrossRefGoogle Scholar
  34. 34.
    M. Kawamura, R. Sawae, T. Kumaya, K. Takarabe, Y. Manmoto, and T. Sakata, Int. J. Quantum Chem. 100, 1033 (2004).CrossRefGoogle Scholar
  35. 35.
    S. L. Huang, J. X. Chen, Y. N. Li, and B. Zeng, Sci. China-Phys. Mech. Astron. 61, 110311 (2018), arXiv: 1711.10878.ADSCrossRefGoogle Scholar
  36. 36.
    S. M. Fei, Sci. China-Phys. Mech. Astron. 60, 020331 (2017).ADSCrossRefGoogle Scholar
  37. 37.
    N. A. Gershenfeld, and I. L. Chuang, Science 275, 350 (1997).MathSciNetCrossRefGoogle Scholar
  38. 38.
    R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford University Press, Oxford, 1990).Google Scholar
  39. 39.
    T. Xin, J. S. Pedernales, L. Lamata, E. Solano, and G. L. Long, Sci. Rep. 7, 12797 (2017), arXiv: 1606.00686.ADSCrossRefGoogle Scholar
  40. 40.
    G. M. Leskowitz, and L. J. Mueller, Phys. Rev. A 69, 052302 (2004).ADSCrossRefGoogle Scholar
  41. 41.
    J. S. Lee, Phys. Lett. A 305, 349 (2002).ADSCrossRefGoogle Scholar
  42. 42.
    T. Xin, D. Lu, J. Klassen, N. Yu, Z. Ji, J. Chen, X. Ma, G. Long, B. Zeng, and R. Laflamme, Phys. Rev. Lett. 118, 020401 (2017), arXiv: 1604.02046.ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S. J. Glaser, J. Magn. Reson. 172, 296 (2005).ADSCrossRefGoogle Scholar
  44. 44.
    C. A. Ryan, C. Negrevergne, M. Laforest, E. Knill, and R. Laflamme, Phys. Rev. A 78, 012328 (2008), arXiv: 0803.1982.ADSCrossRefGoogle Scholar
  45. 45.
    D. Lu, K. Li, J. Li, H. Katiyar, A. J. Park, G. Feng, T. Xin, H. Li, G. Long, A. Brodutch, J. Baugh, B. Zeng, and R. Laflamme, npj Quantum Inf. 3, 45 (2017), arXiv: 1701.01198.ADSCrossRefGoogle Scholar
  46. 46.
    J. Li, X. Yang, X. Peng, and C. P. Sun, Phys. Rev. Lett. 118, 150503 (2017), arXiv: 1608.00677.ADSCrossRefGoogle Scholar
  47. 47.
    Y. G. Chen, and J. B. Wang, Comput. Phys. Commun. 184, 853 (2013), arXiv: 1208.0194.ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    M. Möttönen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, Phys. Rev. Lett. 93, 130502 (2004).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tao Xin
    • 1
    • 2
    • 3
    • 4
  • Liang Hao
    • 5
  • Shi-Yao Hou
    • 6
    • 7
  • Guan-Ru Feng
    • 8
  • Gui-Lu Long
    • 1
    • 9
    • 10
    Email author
  1. 1.State Key Laboratory of Low-dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijingChina
  2. 2.Shenzhen Institute for Quantum Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
  3. 3.Peng Cheng LaboratoryCenter for Quantum ComputingShenzhenChina
  4. 4.Shenzhen Key Laboratory of Quantum Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
  5. 5.Institute of Applied Physics and Computational MathematicsBeijingChina
  6. 6.Center for Computational SciencesSichuan Normal UniversityChengduChina
  7. 7.College of Physics and Electronic EngineeringSichuan Normal UniversityChengduChina
  8. 8.Institute for Quantum ComputingWaterlooCanada
  9. 9.Tsinghua National Laboratory of Information Science and TechnologyBeijingChina
  10. 10.The Innovative Center of Quantum MatterBeijingChina

Personalised recommendations