Advertisement

Dissipative preparation of Bell states with parallel quantum Zeno dynamics

  • 27 Accesses

  • 1 Citations

Abstract

We propose a new mechanism, parallel quantum Zeno dynamics, to dissipatively prepare all Bell entangled states of the two-qubit system in the context of cavity quantum electrodynamics. This mechanism can provide two transition channels between ground states and two different dark states simultaneously, which efficiently speeds up the stabilization of the entanglement and suppresses the adverse influence of surrounding environments. In addition, there is no need for the initialization of quantum states and the Clauser-Horne-Shimony-Holt inequality can be violated in a finite temperature bath. The experimental feasibility is also studied by the state-of-the-art technique and a high fidelity about 99% can be achieved.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. 1

    A. Peres, Quantum Theory: Concepts and Methods (Academic, New York, 1993), p. 423.

  2. 2

    H. P. Breuer, and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007).

  3. 3

    J. Zhou, B. J. Liu, Z. P. Hong, and Z. Y. Xue, Sci. China-Phys. Mech. Astron. 61, 010312 (2018), arXiv: 1705.08852.

  4. 4

    G. F. Xu, Sci. China-Phys. Mech. Astron. 61, 010331 (2018).

  5. 5

    C. Wang, and Z. Guo, Europhy. Lett. 124, 40003 (2018).

  6. 6

    L. Zhang, N. Chen, C. Zhu, and C. Pei, Europhy. Lett. 125, 40002 (2019).

  7. 7

    F. Gao, S. J. Qin, W. Huang, and Q. Y. Wen, Sci. China-Phys. Mech. Astron. 62, 070301 (2019).

  8. 8

    W. G. Unruh, Phys. Rev. A 51, 992 (1995).

  9. 9

    L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 82, 2417 (1999).

  10. 10

    E. Knill, R. Laflamme, and L. Viola, Phys. Rev. Lett. 84, 2525 (2000).

  11. 11

    M. B. Plenio, and S. F. Huelga, Phys. Rev. Lett. 88, 197901 (2002).

  12. 12

    M. J. Kastoryano, F. Reiter, and A. S. Sørensen, Phys. Rev. Lett. 106, 090502 (2011), arXiv: 1011.1441.

  13. 13

    X. Q. Shao, T. Y. Zheng, C. H. Oh, and S. Zhang, Phys. Rev. A 89, 012319 (2014), arXiv: 1312.0188.

  14. 14

    L. T. Shen, R. X. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, Opt. Lett. 39, 6046 (2014).

  15. 15

    P. Zanardi, J. Marshall, and L. Campos Venuti, Phys. Rev. A 93, 022312 (2016), arXiv: 1506.04311.

  16. 16

    X. Q. Shao, Phys. Rev. A 98, 042310 (2018).

  17. 17

    C. Ahn, A. C. Doherty, and A. J. Landahl, Phys. Rev. A 65, 042301 (2002).

  18. 18

    Y. L. Len, and H. K. Ng, Phys. Rev. A 98, 022307 (2018).

  19. 19

    D. X. Li, and X. Q. Shao, Phys. Rev. A 98, 062338 (2018).

  20. 20

    C. Wang, and J. M. Gertler, arXiv: 1809.03571.

  21. 21

    Y. Matsuzaki, V. M. Bastidas, Y. Takeuchi, W. J. Munro, and S. Saito, arXiv: 1810.02995.

  22. 22

    D. X. Li, and X. Q. Shao, Phys. Rev. A 99, 032348 (2019).

  23. 23

    R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).

  24. 24

    Y. B. Sheng, and L. Zhou, Sci. Bull. 62, 1025 (2017).

  25. 25

    F. G. Deng, G. L. Long, and X. S. Liu, Phys. Rev. A 68, 042317 (2003).

  26. 26

    F. Z. Wu, G. J. Yang, H. B. Wang, J. Xiong, F. Alzahrani, A. Hobiny, and F. G. Deng, Sci. China-Phys. Mech. Astron. 60, 120313 (2017).

  27. 27

    S. S. Chen, L. Zhou, W. Zhong, and Y. B. Sheng, Sci. China-Phys. Mech. Astron. 61, 090312 (2018).

  28. 28

    B. C. Ren, and F. G. Deng, Opt. Express 25, 10863 (2017).

  29. 29

    W. Qin, X. Wang, A. Miranowicz, Z. Zhong, and F. Nori, Phys. Rev. A 96, 012315 (2017), arXiv: 1608.04195.

  30. 30

    B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, Annalen Phys. 530, 1800043 (2018).

  31. 31

    J. L. Wu, and S. L. Su, Europhy. Lett. 126, 30001 (2019).

  32. 32

    S. B. Zheng, and G. C. Guo, Phys. Rev. Lett. 85, 2392 (2000).

  33. 33

    R. Raussendorf, and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).

  34. 34

    F. Benatti, R. Floreanini, and M. Piani, Phys. Rev. Lett. 91, 070402 (2003).

  35. 35

    J. H. An, S. J. Wang, and H. G. Luo, Phys. A-Stat. Mech. Appl. 382, 753 (2007).

  36. 36

    B. Misra, and E. C. G. Sudarshan, J. Math. Phys. 18, 756 (1977).

  37. 37

    J. Bernu, S. Deléglise, C. Sayrin, S. Kuhr, I. Dotsenko, M. Brune, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 101, 180402 (2008), arXiv: 0809.4388.

  38. 38

    W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Phys. Rev. A 41, 2295 (1990).

  39. 39

    E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, Phys. Rev. Lett. 97, 260402 (2006).

  40. 40

    P. Facchi, and S. Pascazio, Phys. Rev. Lett. 89, 080401 (2002).

  41. 41

    P. Facchi, and S. Pascazio, J. Phys. A-Math. Theor. 41, 493001 (2008), arXiv: 0903.3297.

  42. 42

    A. Luis, Phys. Rev. A 63, 052112 (2001).

  43. 43

    G. Barontini, L. Hohmann, F. Haas, J. Esteve, and J. Reichel, Science 349, 1317 (2015), arXiv: 1601.07347.

  44. 44

    Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, Y. Wan, A. Keith, E. Knill, S. Glancy, K. Coakley, A. S. Sørensen, D. Leibfried, and D. J. Wineland, Phys. Rev. Lett. 117, 140502 (2016), arXiv: 1603.03848.

  45. 45

    X. Q. Shao, L. Chen, S. Zhang, and K. H. Yeon, J. Phys. B-At. Mol. Opt. Phys. 42, 165507 (2009).

  46. 46

    L. Bretheau, P. Campagne-Ibarcq, E. Flurin, F. Mallet, and B. Huard, Science 348, 776 (2015), arXiv: 1505.04238.

  47. 47

    X. Q. Shao, J. H. Wu, and X. X. Yi, Phys. Rev. A 95, 062339 (2017), arXiv: 1705.03614.

  48. 48

    D. X. Li, X. Q. Shao, J. H. Wu, and X. X. Yi, Opt. Lett. 42, 3904 (2017).

  49. 49

    D. X. Li, X. Q. Shao, J. H. Wu, and X. X. Yi, Opt. Lett. 43, 1639 (2018), arXiv: 1803.02167.

  50. 50

    J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).

  51. 51

    P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, Nature 428, 50 (2004).

  52. 52

    S. Rebić, J. Twamley, and G. J. Milburn, Phys. Rev. Lett. 103, 150503 (2009), arXiv: 0902.0402.

  53. 53

    H. Zheng, D. J. Gauthier, and H. U. Baranger, Phys. Rev. Lett. 107, 223601 (2011), arXiv: 1107.0309.

  54. 54

    J. S. Douglas, H. Habibian, C. L. Hung, A. V. Gorshkov, H. J. Kimble, and D. E. Chang, Nat. Photon 9, 326 (2015), arXiv: 1312.2435.

  55. 55

    M. Schiró, C. Joshi, M. Bordyuh, R. Fazio, J. Keeling, and H. E. Türeci, Phys. Rev. Lett. 116, 143603 (2016), arXiv: 1503.04456.

  56. 56

    K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, Nature 436, 87 (2005).

Download references

Author information

Correspondence to XiaoQiang Shao.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11774047).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Li, D. & Shao, X. Dissipative preparation of Bell states with parallel quantum Zeno dynamics. Sci. China Phys. Mech. Astron. 62, 110312 (2019) doi:10.1007/s11433-019-1431-0

Download citation

Keywords

  • Bell states
  • quantum Zeno dynamics
  • quantum dissipation

PACS number(s)

  • 03.65.Ud
  • 03.65.Xp
  • 42.50.Pq