Size effect on deuterium behavior in nano-sized vanadium layers

  • Wen HuangEmail author
  • Martin Brischetto
  • Björgvin Hjörvarsson


Size effect on thermodynamics and diffusion of deuterium in nano-sized vanadium (V) layers is studied. Critical temperature (Tc) for deuterium phase transition is found to decrease with the inverse thickness of V layers and the thermodynamic factor increases as V thickness decreases. These effects are related to the deuterium-deuterium (D-D) interaction change versus V thickness, which experimentally proves that the D-D interaction plays the main contribution to the previously observed V size effect on deuterium chemical diffusion coefficients (Dc). The self-diffusion coefficients (Ds) are obtained through correcting Dc with the thermodynamic factors. It is found that the Ds are similar in 14 and 28 monolayers of V while slightly larger Ds are observed at high concentrations in 14 atomic layers. The weak site blocking effect in the interface is argued to be the main contribution to the observed size effect on Ds.


size effect D-D interaction deuterium diffusion Fe/V superlattice optical transmission 


  1. 1.
    A. Schneemann, J. L. White, S. Y. Kang, S. Jeong, L. F. Wan, E. S. Cho, T. W. Heo, D. Prendergast, J. J. Urban, B. C. Wood, M. D. Allendorf, and V. Stavila, Chem. Rev. 118, 10775 (2018).CrossRefGoogle Scholar
  2. 2.
    G. Majer, U. Eberle, F. Kimmerle, E. Stanik, and S. Orimo, Phys. B-Condensed Matter 328, 81 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    R. Gemma, T. Al-Kassab, R. Kirchheim, and A. Pundt, Script. Mater. 67, 903 (2012).CrossRefGoogle Scholar
  4. 4.
    W. Huang, G. K. Pálsson, M. Brischetto, H. Palonen, S. A. Droulias, O. Hartmann, M. Wolff, and B. Hjörvarsson, New J. Phys. 19, 123004 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    Y. Wei, Y. Zhang, G. H. Lu, and H. B. Xu, Sci. China-Phys. Mech. Astron. 55, 228 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    W. Lu, A. Y. Gao, Y. L. Liu, and Z. H. Dai, Sci. China-Phys. Mech. Astron. 55, 2378 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    M. U. Niemann, S. S. Srinivasan, A. R. Phani, A. Kumar, D. Y. Goswami, and E. K. Stefanakos, J. Nanomaterials 2008(4), 1 (2008).CrossRefGoogle Scholar
  8. 8.
    Y. Wang, K. Michel, and C. Wolverton, Scripta Mater. 117, 86 (2016).CrossRefGoogle Scholar
  9. 9.
    S. Syrenova, C. Wadell, F. A. A. Nugroho, T. A. Gschneidtner, Y. A. Diaz Fernandez, G. Nalin, D. Świtlik, F. Westerlund, T. J. Antosiewicz, V. P. Zhdanov, K. Moth-Poulsen, and C. Langhammer, Nat. Mater. 14, 1236 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    Fukai Y. The Metal-Hydrogen System Basic Bulk Properties. Heidelberg: Springer-Verlag, 2005.Google Scholar
  11. 11.
    X. Xin, G. K. Pálsson, M. Wolff, and B. Hjörvarsson, Phys. Rev. Lett. 113, 046103 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    B. Hjörvarsson, J. Rydén, E. Karlsson, J. Birch, and J. E. Sundgren, Phys. Rev. B 43, 6440 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    J. K. Nørskov, and N. D. Lang, Phys. Rev. B 21, 2131 (1980).ADSCrossRefGoogle Scholar
  14. 14.
    P. Nordlander, J. K. Norskov, and F. Besenbacher, J. Phys. F-Met. Phys. 16, 1161 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    W. Huang, H. Palonen, S. A. Droulias, O. Hartmann, M. Wolff, and B. Hjörvarsson, J. Alloys Compd. 723, 484 (2017).CrossRefGoogle Scholar
  16. 16.
    P. Isberg, B. Hjörvarsson, R. Wäppling, E. B. Svedberg, and L. Hultman, Vacuum 48, 483 (1997).ADSCrossRefGoogle Scholar
  17. 17.
    S. A. Droulias, G. K. Pálsson, H. Palonen, A. Hasan, K. Leifer, V. Kapaklis, B. Hjörvarsson, and M. Wolff, Thin Solid Films 636, 608 (2017).ADSCrossRefGoogle Scholar
  18. 18.
    W. Huang, G. K. Pálsson, M. Brischetto, S. A. Droulias, O. Hartmann, M. Wolff, and B. Hjörvarsson, J. Phys.-Condens. Matter 29, 495701 (2017).CrossRefGoogle Scholar
  19. 19.
    J. Prinz, G. K. Pálsson, P. T. Korelis, and B. Hjörvarsson, Appl. Phys. Lett. 97, 251910 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    G. K. Pálsson, A. Bliersbach, M. Wolff, A. Zamani, and B. Hjörvarsson, Nat. Commun. 3, 892 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    G. K. Palsson. Influence of Self Trapping, Clamping and Confinement on Hdrogen Absorption. Dissertation for Doctoral Degree (Uppsala University, Uppsala, 2011).Google Scholar
  22. 22.
    S. Hayashi, J. Solid State Chem. 177, 824 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    G. K. Pálsson, M. Wälde, M. Amft, Y. Wu, M. Ahlberg, M. Wolff, A. Pundt, and B. Hjörvarsson, Phys. Rev. B 85, 195407 (2012), arXiv: 1203.4247.ADSCrossRefGoogle Scholar
  24. 24.
    W. Huang, L. P. A. Mooij, S. A. Droulias, H. Palonen, O. Hartmann, G. K. Pálsson, M. Wolff, and B. Hjörvarsson, J. Phys.-Condens. Matter 29, 045402 (2017).ADSCrossRefGoogle Scholar
  25. 25.
    B. Hjörvarsson, M. Vergnat, J. Birch, J. E. Sundgren, and B. Rodmacq, Phys. Rev. B 50, 11223 (1994).ADSCrossRefGoogle Scholar
  26. 26.
    G. Andersson, B. Hjörvarsson, and P. Isberg, Phys. Rev. B 55, 1774 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wen Huang
    • 1
    • 2
    Email author
  • Martin Brischetto
    • 3
  • Björgvin Hjörvarsson
    • 2
  1. 1.State Key Laboratory of Silicon Materials and School of Materials Science and EngineeringZhejiang UniversityHangzhouChina
  2. 2.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  3. 3.Department of Materials Science and EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations