Advertisement

A scaling phenomenon for the cross section of fragment produced in projectile fragmentation reactions

  • Yi-Dan Song
  • Hui-Ling Wei
  • Chun-Wang MaEmail author
Article
  • 19 Downloads

Abstract

A scaling phenomenon has been found for the cross section of a fragment, which is defined as a “square” cross section (SCS). This phenomenon can unify the cross sections of fragments in projectile fragmentation (PF) reactions. An empirical formula is proposed to calculate SCS for a fragment with parameters determined by an extensive investigation of measured reactions ranging from Fermi energies to relativistic energies. The scaling phenomenon of SCS has been verified using different techniques, showing that the scaling of SCS generally exists in PF reactions. The concept of SCS, which can be assumed as a standard value for a fragment, is shown to accurately predict the cross sections of isotopes in PF reactions with incident energies ranging from tens of A MeV to approximately 1000A MeV.

Keywords

scaling phenomenon cross section prediction intermediate mass fragments projectile fragmentation 

References

  1. 1.
    B. Blank, T. Goigoux, P. Ascher, M. Gerbaux, J. Giovinazzo, S. Grévy, T. K. Nieto, C. Magron, J. Agramunt, A. Algora, V. Guadilla, A. Montaner-Piza, A. I. Morales, S. E. A. Orrigo, B. Rubio, D. S. Ahn, P. Doornenbal, N. Fukuda, N. Inabe, G. Kiss, T. Kubo, S. Kubono, S. Nishimura, V. H. Phong, H. Sakurai, Y. Shimizu, P. A. Söderström, T. Sumikama, H. Suzuki, H. Takeda, J. Wu, Y. Fujita, M. Tanaka, W. Gelletly, P. Aguilera, F. Molina, F. Diel, D. Lubos, G. de Angelis, D. Napoli, C. Borcea, A. Boso, R. B. Cakirli, E. Ganioglu, J. Chiba, D. Nishimura, H. Oikawa, Y. Takei, S. Yagi, K. Wimmer, G. de France, and S. Go, Phys. Rev. C 93, 061301 (2016), arXiv: 1605.05905.ADSCrossRefGoogle Scholar
  2. 2.
    B. H. Sun, J. W. Zhao, X. H. Zhang, L. N. Sheng, Z. Y. Sun, I. Tanihata, S. Terashima, Y. Zheng, L. H. Zhu, L. M. Duan, L. C. He, R. J. Hu, G. S. Li, W. J. Lin, W. P. Lin, C. Y. Liu, Z. Liu, C. G. Lu, X. W. Ma, L. J. Mao, Y. Tian, F. Wang, M. Wang, S. T. Wang, J. W. Xia, X. D. Xu, H. S. Xu, Z. G. Xu, J. C. Yang, D. Y. Yin, Y. J. Yuan, W. L. Zhan, Y. H. Zhang, and X. H. Zhou, Sci. Bull. 63, 78 (2018).CrossRefGoogle Scholar
  3. 3.
    X. W. Xia, Y. Lim, P. W. Zhao, H. Z. Liang, X. Y. Qu, Y. Chen, H. Liu, L. F. Zhang, S. Q. Zhang, Y. Kim, and J. Meng, Atom. Data Nucl. Data Tables 121-122, 1 (2018), arXiv: 1704.08906.ADSCrossRefGoogle Scholar
  4. 4.
    M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, Chin. Phys. C 41, 030003 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    N. Wang, M. Liu, X. Wu, and J. Meng, Phys. Lett. B 734, 215 (2014), arXiv: 1405.2616.ADSCrossRefGoogle Scholar
  6. 6.
    T. Kubo, Nucl. Instrum. Meth. Phys. Res. Sect. B B204, 97 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    J. W. Xia, W. L. Zhan, B. W. Wei, Y. J. Yuan, M. T. Song, W. Z. Zhang, X. D. Yang, P. Yuan, D. Q. Gao, H. W. Zhao, X. T. Yang, G. Q. Xiao, K. T. Man, J. R. Dang, X. H. Cai, Y. F. Wang, J. Y. Tang, W. M. Qiao, Y. N. Rao, Y. He, L. Z. Mao, and Z. Z. Zhou, Nucl. Instrum. Meth. Phys. Res. Sect. A 488, 11 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    M. Hausmann, F. Attallah, K. Beckert, F. Bosch, A. Dolinskiy, H. Eickhoff, M. Falch, B. Franczak, B. Franzke, H. Geissel, T. Kerscher, O. Klepper, H. J. Kluge, C. Kozhuharov, K. E. G. Löbner, G. Münzenberg, F. Nolden, Y. N. Novikov, T. Radon, H. Schatz, C. Scheidenberger, J. Stadlmann, M. Steck, T. Winkler, and H. Wollnik, Nucl. Instrum. Meth. Phys. Res. Sect. A 446, 569 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    B. Wu, J. C. Yang, J. W. Xia, X. L. Yan, X. J. Hu, L. J. Mao, L. N. Sheng, J. X. Wu, D. Y. Yin, W. P. Chai, G. D. Shen, W. W. Ge, G. Wang, H. Zhao, S. Ruan, X. W. Ma, M. Wang, S. Litvinov, W. Q. Wen, X. C. Chen, R. J. Chen, M. T. Tang, W. Wu, C. Luo, T. C. Zhao, C. F. Shi, X. Fu, J. Liu, and L. Liang, Nucl. Instrum. Meth. Phys. Res. Sect. A 881, 27 (2018).ADSCrossRefGoogle Scholar
  10. 10.
    H. Geissel, H. Weick, M. Winkler, G. Münzenberg, V. Chichkine, M. Yavor, T. Aumann, K. H. Behr, M. Böhmer, A. Brünle, K. Burkard, J. Benlliure, D. Cortina-Gil, L. Chulkov, A. Dael, J. E. Ducret, H. Emling, B. Franczak, J. Friese, B. Gastineau, J. Gerl, R. Gernhäuser, M. Hellström, B. Jonson, J. Kojouharova, R. Kulessa, B. Kindler, N. Kurz, B. Lommel, W. Mittig, G. Moritz, C. Mühle, J. A. Nolen, G. Nyman, P. Roussell-Chomaz, C. Scheidenberger, K. H. Schmidt, G. Schrieder, B. M. Sherrill, H. Simon, K. Sümmerer, N. A. Tahir, V. Vysotsky, H. Wollnik, and A. F. Zeller, Nucl. Instrum. Meth. Phys. Res. Sect. B 204, 71 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    K. Sümmerer, and B. Blank, Phys. Rev. C 61, 034607 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    K. Sümmerer, Phys. Rev. C 86, 014601 (2012), arXiv: 1205.5436.ADSCrossRefGoogle Scholar
  13. 13.
    K. Sümmerer, Phys. Rev. C 87, 039903 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    X. H. Zhang, Z. Y. Sun, R. F. Chen, Z. Q. Chen, Z. Y. Guo, J. L. Han, Z. G. Hu, T. H. Huang, R. S. Mao, Z. G. Xu, M. Wang, J. S. Wang, Y. Wang, G. Q. Xiao, H. S. Xu, X. H. Yuan, H. B. Zhang, X. Y. Zhang, and T. C. Zhao, Phys. Rev. C 85, 024621 (2012).Google Scholar
  15. 15.
    T. Brohm, and K. H. Schmidt, Nucl. Phys. A 569, 821 (1994).ADSCrossRefGoogle Scholar
  16. 16.
    J. J. Gaimard, and K. H. Schmidt, Nucl. Phys. A 531, 709 (1991).ADSCrossRefGoogle Scholar
  17. 17.
    D. Q. Fang, W. Q. Shen, J. Feng, X. Z. Cai, J. S. Wang, Q. M. Su, Y. G. Ma, Y. T. Zhu, S. L. Li, H. Y. Wu, Q. B. Gou, G. M. Jin, W. L. Zhan, Z. Y. Guo, and G. Q. Xiao, Phys. Rev. C 61, 044610 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    A. S. Botvina, A. D. Jackson, and I. N. Mishustin, Phys. Rev. E 62, R64 (2000).ADSCrossRefGoogle Scholar
  19. 19.
    R. Donangelo, K. Sneppen, and S. R. Souza, Comput. Phys. Commun. 140, 405 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    C.-W. Ma, H.-L. Wei, J.-Y. Wang, G.-J. Liu, Y. Fu, D.-Q. Fang, W.-D. Tian, X.-Z. Cai, H.-W. Wang, and Y.-G. Ma, Phys. Rev. C 79, 034606 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    F. H. Liu, and J. S. Li, Phys. Rev. C 78, 044602 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    F. H. Liu, Nucl. Phys. A 810, 159 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    M. K. Singh, A. K. Soma, R. Pathak, and V. Singh, Ind. J. Phys. 88, 323 (2014), arXiv: 1305.2582.CrossRefGoogle Scholar
  24. 24.
    R. W. Minich, S. Agarwal, A. Bujak, J. Chuang, J. E. Finn, L. J. Gutay, A. S. Hirsch, N. T. Porile, R. P. Scharenberg, B. C. Stringfellow, and F. Turkot, Phys. Lett. B 118, 458 (1982).ADSCrossRefGoogle Scholar
  25. 25.
    A. S. Hirsch, A. Bujak, J. E. Finn, L. J. Gutay, R. W. Minich, N. T. Porile, R. P. Scharenberg, B. C. Stringfellow, and F. Turkot, Phys. Rev. C 29, 508 (1984).ADSCrossRefGoogle Scholar
  26. 26.
    C. Das, S. Das Gupta, X. Liu, and M. Tsang, Phys. Rev. C 64, 044608 (2001).ADSCrossRefGoogle Scholar
  27. 27.
    M. B. Tsang, W. G. Lynch, W. A. Friedman, M. Mocko, Z. Y. Sun, N. Aoi, J. M. Cook, F. Delaunay, M. A. Famiano, H. Hui, N. Imai, H. Iwasaki, T. Motobayashi, M. Niikura, T. Onishi, A. M. Rogers, H. Sakurai, H. Suzuki, E. Takeshita, S. Takeuchi, and M. S. Wallace, Phys. Rev. C 76, 041302 (2007), arXiv: 0709.2177.ADSCrossRefGoogle Scholar
  28. 28.
    M. Mocko, M. B. Tsang, L. Andronenko, M. Andronenko, F. Delaunay, M. Famiano, T. Ginter, V. Henzl, D. Henzlová, H. Hua, S. Lukyanov, W. G. Lynch, A. M. Rogers, M. Steiner, A. Stolz, O. Tarasov, M. J. Goethem, G. Verde, W. S. Wallace, and A. Zalessov, Phys. Rev. C 74, 054612 (2006).ADSCrossRefGoogle Scholar
  29. 29.
    D. Lacroix, A. Van Lauwe, and D. Durand, Phys. Rev. C 69, 054604 (2004).ADSCrossRefGoogle Scholar
  30. 30.
    M. Mocko, M. B. Tsang, D. Lacroix, A. Ono, P. Danielewicz, W. G. Lynch, and R. J. Charity, Phys. Rev. C 78, 024612 (2008), arXiv: 0804.2603.ADSCrossRefGoogle Scholar
  31. 31.
    J. P. Bondorf, A. S. Botvina, A. S. Iljinov, I. N. Mishustin, and K. Sneppen, Phys. Rep. 257, 133 (1995).ADSCrossRefGoogle Scholar
  32. 32.
    R. Ogul, N. Buyukcizmeci, A. Ergun, and A. S. Botvina, Nucl. Sci. Tech. 28, 18 (2017).CrossRefGoogle Scholar
  33. 33.
    J. Aichelin, Phys. Rep. 202, 233 (1991).ADSCrossRefGoogle Scholar
  34. 34.
    R. K. Puri, and J. Aichelin, J. Comput. Phys. 162, 245 (2000).ADSCrossRefGoogle Scholar
  35. 35.
    Z. Q. Feng, Nucl. Sci. Tech. 29, 40 (2018).CrossRefGoogle Scholar
  36. 36.
    Z. F. Zhang, D. Q. Fang, and Y. G. Ma, Nucl. Sci. Tech. 29, 78 (2018).ADSCrossRefGoogle Scholar
  37. 37.
    A. Ono, Phys. Rev. C 59, 853 (1999).ADSCrossRefGoogle Scholar
  38. 38.
    M. Huang, Z. Chen, S. Kowalski, Y. G. Ma, R. Wada, T. Keutgen, K. Hagel, M. Barbui, A. Bonasera, C. Bottosso, T. Materna, J. B. Natowitz, L. Qin, M. R. D. Rodrigues, P. K. Sahu, and J. Wang, Phys. Rev. C 81, 044620 (2010), arXiv: 1001.3621.ADSCrossRefGoogle Scholar
  39. 39.
    C. W. Ma, Y. L. Zhang, S. S. Wang, and C. Y. Qiao, Chin. Phys. Lett. 32, 072501 (2015).ADSCrossRefGoogle Scholar
  40. 40.
    V. Y. Denisov, O. I. Davidovskaya, and I. Y. Sedykh, Phys. Rev. C 92, 014602 (2015), arXiv: 1506.08005.ADSCrossRefGoogle Scholar
  41. 41.
    C. W. Ma, C. Y. Qiao, T. T. Ding, and Y. D. Song, Nucl. Sci. Tech. 27, 111 (2016).CrossRefGoogle Scholar
  42. 42.
    C. W. Ma, and Y. G. Ma, Prog. Part. Nucl. Phys. 99, 120 (2018), arXiv: 1801.02192.ADSCrossRefGoogle Scholar
  43. 43.
    B. Mei, Phys. Rev. C 95, 034608 (2017).ADSCrossRefGoogle Scholar
  44. 44.
    Y. D. Song, H. L. Wei, C. W. Ma, and J. H. Chen, Nucl. Sci. Tech. 29, 96 (2018).CrossRefGoogle Scholar
  45. 45.
    M. B. Tsang, W. A. Friedman, C. K. Gelbke, W. G. Lynch, G. Verde, and H. S. Xu, Phys. Rev. Lett. 86, 5023 (2001).ADSCrossRefGoogle Scholar
  46. 46.
    M. Huang, Z. Chen, S. Kowalski, R. Wada, T. Keutgen, K. Hagel, J. Wang, L. Qin, J. B. Natowitz, T. Materna, P. K. Sahu, M. Barbui, C. Bottosso, M. R. D. Rodrigues, and A. Bonasera, Nucl. Phys. A 847, 233 (2010), arXiv: 1002.0311.ADSCrossRefGoogle Scholar
  47. 47.
    C. W. Ma, H. L. Wei, S. S. Wang, Y. G. Ma, R. Wada, and Y. L. Zhang, Phys. Lett. B 742, 19 (2015).ADSCrossRefGoogle Scholar
  48. 48.
    C. W. Ma, Y. D. Song, C. Y. Qiao, S. S. Wang, H. L. Wei, Y. G. Ma, and X. G. Cao, J. Phys. G-Nucl. Part. Phys. 43, 045102 (2016), arXiv: 1510.08095.ADSCrossRefGoogle Scholar
  49. 49.
    C. W. Ma, H. L. Wei, G. J. Liu, and J. Y. Wang, J. Phys. G-Nucl. Part. Phys. 37, 015104 (2010).ADSCrossRefGoogle Scholar
  50. 50.
    M. Baldo, and G. F. Burgio, Prog. Part. Nucl. Phys. 91, 203 (2016), arXiv: 1606.08838.ADSCrossRefGoogle Scholar
  51. 51.
    B. Li, L. Chen, and C. Ko, Phys. Rep. 464, 113 (2008), arXiv: 0804.3580.ADSCrossRefGoogle Scholar
  52. 52.
    A. Y. Abul-Magd, W. A. Friedman, and J. Hüfner, Phys. Rev. C 34, 113 (1986).ADSCrossRefGoogle Scholar
  53. 53.
    C. W. Ma, Y. D. Song, and H. L. Wei, Sci. China-Phys. Mech. Astron. 62, 012013 (2019).CrossRefGoogle Scholar
  54. 54.
    C. W. Ma, and S. S. Wang, Chin. Phys. C 35, 1017 (2011).ADSCrossRefGoogle Scholar
  55. 55.
    O. B. Tarasov, D. J. Morrissey, A. M. Amthor, T. Baumann, D. Bazin, A. Gade, T. N. Ginter, M. Hausmann, N. Inabe, T. Kubo, A. Nettleton, J. Pereira, M. Portillo, B. M. Sherrill, A. Stolz, and M. Thoennessen, Phys. Rev. Lett. 102, 142501 (2009), arXiv: 0903.1975.ADSCrossRefGoogle Scholar
  56. 56.
    M. Notani, H. Sakurai, N. Aoi, H. Iwasaki, N. Fukuda, Z. Liu, K. Yoneda, H. Ogawa, T. Teranishi, T. Nakamura, H. Okuno, A. Yoshida, Y. X. Watanabe, S. Momota, N. Inabe, T. Kubo, S. Ito, A. Ozawa, T. Suzuki, I. Tanihata, and M. Ishihara, Phys. Rev. C 76, 044605 (2007).ADSCrossRefGoogle Scholar
  57. 57.
    S. Lukyanov, M. Mocko, L. Andronenko, M. Andronenko, D. Bazin, M. A. Famiano, A. Gade, S. P. Lobastov, W. G. Lynch, A. M. Rogers, O. B. Tarasov, M. B. Tsang, G. Verde, M. S. Wallace, and R. G. T. Zegers, Phys. Rev. C 80, 014609 (2009).ADSCrossRefGoogle Scholar
  58. 58.
    S. K. Sharma, B. Kamys, F. Goldenbaum, and D. Filges, Eur. Phys. J. A 53, 150 (2017).ADSCrossRefGoogle Scholar
  59. 59.
    J. Reinhold, J. Friese, H. J. Körner, R. Schneider, K. Zeitelhack, H. Geissel, A. Magel, G. Münzenberg, and K. Sümmerer, Phys. Rev. C 58, 247 (1998).ADSCrossRefGoogle Scholar
  60. 60.
    V. Föhr, A. Bacquias, E. Casarejos, T. Enqvist, A. R. Junghans, A. Kelić-Heil, T. Kurtukian, S. Lukić, D. Pérez-Loureiro, R. Pleskač, M. V. Ricciardi, K. H. Schmidt, and J. Taïeb, Phys. Rev. C 84, 054605 (2011), arXiv: 1106.5368.ADSCrossRefGoogle Scholar
  61. 61.
    D. Henzlova, K. H. Schmidt, M. V. Ricciardi, A. Kelić, V. Henzl, P. Napolitani, L. Audouin, J. Benlliure, A. Boudard, E. Casarejos, J. E. Ducret, T. Enqvist, A. Heinz, A. Junghans, B. Jurado, A. Krása, T. Kurtukian, S. Leray, M. F. Ordóñez, J. Pereira, R. Pleskač, F. Rejmund, C. Schmitt, C. Stéphan, L. Tassan-Got, C. Villagrasa, C. Volant, A. Wagner, and O. Yordanov, Phys. Rev. C 78, 044616 (2008), arXiv: 0801.3110.ADSCrossRefGoogle Scholar
  62. 62.
    Y. D. Song, H. L. Wei, and C. W. Ma, Chin. Phys. C 42, 074102 (2018), arXiv: 1804.10091.ADSCrossRefGoogle Scholar
  63. 63.
    C. W. Ma, T. T. Ding, and J. L. Tian, J. Phys. G-Nucl. Part. Phys. 45, 015102 (2018).ADSCrossRefGoogle Scholar
  64. 64.
    F. Niu, and C. W. Ma, Chin. Phys. C 42, 034102 (2018), arXiv: 1801.01964.ADSCrossRefGoogle Scholar
  65. 65.
    P. W. Wen, and L. G. Cao, Chin. Phys. Lett. 30, 052101 (2013); C. W. Ma, H. L. Wei, and Y. G. Ma, Phys. Rev. C 88, 044612 (2013), arXiv: 1310.4427.ADSCrossRefGoogle Scholar
  66. 66.
    F. Pönisch, K. Parodi, B. G. Hasch, and W. Enghardt, Phys. Med. Biol. 49, 5217 (2004).CrossRefGoogle Scholar
  67. 67.
    I. Pshenichnov, I. Mishustin, and W. Greiner, Phys. Med. Biol. 51, 6099 (2006).CrossRefGoogle Scholar
  68. 68.
    H. Rohling, L. Sihver, M. Priegnitz, W. Enghardt, and F. Fiedler, Phys. Med. Biol. 58, 6355 (2013).CrossRefGoogle Scholar
  69. 69.
    A. Lühr, M. Priegnitz, F. Fiedler, N. Sobolevsky, and N. Bassler, Appl. Radiat. Isotopes 83, 165 (2014).CrossRefGoogle Scholar
  70. 70.
    S. Helmbrecht, M. Priegnitz, W. Enghardt, H. Rohling, and F. Fiedler, IEEE Trans. Nucl. Sci. 63, 61 (2016).ADSCrossRefGoogle Scholar
  71. 71.
    S. Salvador, J. Colin, D. Cussol, C. Divay, J. M. Fontbonne, and M. Labalme, Phys. Rev. C 95, 044607 (2017).ADSCrossRefGoogle Scholar
  72. 72.
    C. W. Ma, and J. L. Xu, J. Phys. G-Nucl. Part. Phys. 44, 125101 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Particle and Nuclear PhysicsHenan Normal UniversityXinxiangChina

Personalised recommendations