Structure, charge transfer, and superconductivity of M-doped phenanthrene (M = Al, Ga, and In): A comparative study of K-doped cases

  • Hai-Yan Lv
  • Guo-Hua ZhongEmail author
  • Ming ChenEmail author
  • Chun-Lei Yang
  • Xiao-Jia Chen
  • Hai-Qing Lin


Aromatic hydrocarbons doped with K have been shown to be potential high-temperature superconductors. To investigate the doping effects of trivalent metals (Al, Ga, and In) that have a smaller radii than K, we studied the crystal structure, stability, charge transfer, band structure, and superconductivity of trivalent metal-doped phenanthrene via first-principles calculations. Doping with Al/Ga/In considerably differs from doping with K and cannot be simply regarded as a linear developmental change in the structural and electronic characteristics caused by a change in the valence electron numbers. Al/Ga/In atoms are difficult to dope into the intralayer region, and the charge transfer is close to zero, which is far less than the effect of K doping. We found that the metallization of the Al/Ga/In-doped system originates from the formation of gap states instead of charge transfer. The weak superconductivity obtained in the Al/Ga/In-doped system is also different from the K-doped system. These results are helpful in terms of understanding the structure and superconductivity of metal-doped aromatic superconductors.


phenanthrene aromatic hydrocarbons trivalent metals charge transfer superconductivity 


  1. 1.
    V. L. Ginzburg, Phys. Lett. 13, 101 (1964).ADSCrossRefGoogle Scholar
  2. 2.
    W. A. Little, Phys. Rev. 134, A1416 (1964).ADSCrossRefGoogle Scholar
  3. 3.
    V. L. Ginzburg, Sov. Phys. Usp. 19, 174 (1976).ADSCrossRefGoogle Scholar
  4. 4.
    R. Mitsuhashi, Y. Suzuki, Y. Yamanari, H. Mitamura, T. Kambe, N. Ikeda, H. Okamoto, A. Fujiwara, M. Yamaji, N. Kawasaki, Y. Maniwa, and Y. Kubozono, Nature 464, 76 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    Y. Kubozono, H. Mitamura, X. Lee, X. He, Y. Yamanari, Y. Takahashi, Y. Suzuki, Y. Kaji, R. Eguchi, K. Akaike, T. Kambe, H. Okamoto, A. Fujiwara, T. Kato, T. Kosugi, and H. Aoki, Phys. Chem. Chem. Phys. 13, 16476 (2011).CrossRefGoogle Scholar
  6. 6.
    X. F. Wang, R. H. Liu, Z. Gui, Y. L. Xie, Y. J. Yan, J. J. Ying, X. G. Luo, and X. H. Chen, Nat. Commun. 2, 507 (2011), arXiv: 1102.4075.ADSCrossRefGoogle Scholar
  7. 7.
    Q. W. Huang, G. H. Zhong, J. Zhang, X. M. Zhao, C. Zhang, H. Q. Lin, and X. J. Chen, J. Chem. Phys. 140, 114301 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    M. Xue, T. Cao, D. Wang, Y. Wu, H. Yang, X. Dong, J. He, F. Li, and G. F. Chen, Sci. Rep. 2, 389 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    G. H. Zhong, D. Y. Yang, K. Zhang, R. S. Wang, C. Zhang, H. Q. Lin, and X. J. Chen, Phys. Chem. Chem. Phys. 20, 25217 (2018).CrossRefGoogle Scholar
  10. 10.
    R.-S. Wang, Y. Gao, Z.-B. Huang, and X.-J. Chen, arXiv: 1703.05803.Google Scholar
  11. 11.
    R.-S. Wang, Y. Gao, Z.-B. Huang, and X.-J. Chen, arXiv: 1703.05804.Google Scholar
  12. 12.
    R.-S. Wang, Y. Gao, Z.-B. Huang, and X.-J. Chen, arXiv: 1703.06641.Google Scholar
  13. 13.
    H. Li, X. Zhou, S. Parham, T. Nummy, J. Griffith, K. Gordon, E. L. Chronister, and D. D. Dessau, arXiv: 1704.04230.Google Scholar
  14. 14.
    W. Liu, H. Lin, R. Kang, X. Zhu, Y. Zhang, S. Zheng, and H. H. Wen, Phys. Rev. B 96, 224501 (2017), arXiv: 1706.06018.ADSCrossRefGoogle Scholar
  15. 15.
    M. Q. Ren, W. Chen, Q. Liu, C. Chen, Y. J. Qiao, Y. J. Chen, G. Zhou, Z. H. Li, T. Zhang, Y. J. Yan, and D. L. Feng, Phys. Rev. B 99, 045417 (2019).ADSCrossRefGoogle Scholar
  16. 16.
    P. Neha, A. Bhardwaj, V. Sahu, and S. Patnaik, Phys. C-Superconduct. Appl. 554, 1 (2018), arXiv: 1712.01766.ADSCrossRefGoogle Scholar
  17. 17.
    J. F. Yan, G. H. Zhong, R. S. Wang, K. Zhang, H. Q. Lin, and X. J. Chen, J. Phys. Chem. Lett. 10, 40 (2019).CrossRefGoogle Scholar
  18. 18.
    G. Huang, G. H. Zhong, R. S. Wang, J. X. Han, H. Q. Lin, and X. J. Chen, Carbon 143, 837 (2019).CrossRefGoogle Scholar
  19. 19.
    A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M. Palstra, A. P. Ramirez, and A. R. Kortan, Nature 350, 600 (1991).ADSCrossRefGoogle Scholar
  20. 20.
    A. Y. Ganin, Y. Takabayashi, Y. Z. Khimyak, S. Margadonna, A. Tamai, M. J. Rosseinsky, and K. Prassides, Nat. Mater. 7, 367 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    D. J¡äerome, A. Mazaud, M. Ribault, and K. Bechgaard, J. Phyique Lett. 41, 95 (1980).CrossRefGoogle Scholar
  22. 22.
    H. Taniguchi, M. Miyashita, K. Uchiyama, K. Satoh, N. Môri, H. Okamoto, K. Miyagawa, K. Kanoda, M. Hedo, and Y. Uwatoko, J. Phys. Soc. Jpn. 72, 468 (2003).ADSCrossRefGoogle Scholar
  23. 23.
    S. Heguri, Q. Thi Nhu Phan, Y. Tanabe, and K. Tanigaki, Phys. Rev. B 90, 134519 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, Phys. Rev. B 82, 094116 (2010), arXiv: 1008.3601.ADSCrossRefGoogle Scholar
  25. 25.
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, Comput. Phys. Commun. 183, 2063 (2012), arXiv: 1205.2264.ADSCrossRefGoogle Scholar
  26. 26.
    G. Kresse, and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
  27. 27.
    G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).ADSCrossRefGoogle Scholar
  28. 28.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  29. 29.
    K. Lee, D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101 (2010), arXiv: 1003.5255.ADSCrossRefGoogle Scholar
  30. 30.
    G. H. Zhong, C. Zhang, X. Yan, X. Li, Z. Du, G. Jing, and C. Ma, Mol. Phys. 115, 472 (2017).ADSCrossRefGoogle Scholar
  31. 31.
    X. Wang, G. Zhong, X. Yan, X. Chen, and H. Lin, J. Phys. Chem. Solids 104, 56 (2017).ADSCrossRefGoogle Scholar
  32. 32.
    G. H. Zhong, X. H. Wang, R. S. Wang, J. X. Han, C. Zhang, X. J. Chen, and H. Q. Lin, J. Phys. Chem. C 122, 3801 (2018).CrossRefGoogle Scholar
  33. 33.
    S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).ADSCrossRefGoogle Scholar
  34. 34.
    N. Troullier, and J. L. Martins, Phys. Rev. B 43, 1993 (1991).ADSCrossRefGoogle Scholar
  35. 35.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.-Condens. Matter 21, 395502 (2009), arXiv: 0906.2569.CrossRefGoogle Scholar
  36. 36.
    P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H. Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H. V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, J. Phys.-Condens. Matter 29, 465901 (2017), arXiv: 1709.10010.CrossRefGoogle Scholar
  37. 37.
    X. W. Yan, C. Zhang, G. Zhong, D. Ma, and M. Gao, J. Mater. Chem. C 4, 11566 (2016).CrossRefGoogle Scholar
  38. 38.
    G. Zhong, K. Zhang, F. He, X. Ma, L. Lu, Z. Liu, and C. Yang, Phys. B-Condens. Matter 407, 3818 (2012).ADSCrossRefGoogle Scholar
  39. 39.
    G. Zhong, C. Zhang, X. Chen, Y. Li, R. Zhang, and H. Lin, J. Phys. Chem. C 116, 5225 (2012).CrossRefGoogle Scholar
  40. 40.
    Y. Cheng, C. Zhang, T. Wang, G. Zhong, C. Yang, X. J. Chen, and H. Q. Lin, Sci. Rep. 5, 16475 (2015).ADSCrossRefGoogle Scholar
  41. 41.
    G. Zhong, Z. Huang, and H. Lin, IEEE Trans. Magn. 50, 1700103 (2014).CrossRefGoogle Scholar
  42. 42.
    M. Casula, M. Calandra, G. Profeta, and F. Mauri, Phys. Rev. Lett. 107, 137006 (2011), arXiv: 1106.1446.ADSCrossRefGoogle Scholar
  43. 43.
    P. B. Allen, and R. C. Dynes, Phys. Rev. B 12, 905 (1975).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
  2. 2.Nano Science and Technology InstituteUniversity of Science and Technology of ChinaSuzhouChina
  3. 3.Beijing Computational Science Research CenterBeijingChina
  4. 4.Center for High Pressure Science and Technology Advanced ResearchShanghaiChina

Personalised recommendations