Advertisement

PeV neutrinos from wind breakouts of type II supernovae

Article
  • 17 Downloads

Abstract

Recently, rapid multiwavelength photometry and flash spectra of supernova (SN) 2013fs imply that the progenitor stars of regular type II supernovae (SNe II) may be commonly surrounded by a confined, dense stellar wind ejected from the progenitor star at a large mass loss rate over few years before the SNe. Based on the assumption that the pre-SN progenitor stars of SNe II emit wind similar to SN 2013fs, with a mass loss rate \(\dot{M}\;\sim\;3\times10^{-3}(v_w/100\;{\rm{km}\;s^{-1})}M_\odot\;\rm{yr}^{-1}\), we investigated neutrino emissions during the wind breakouts of SN shocks. We find that a typical SNe II can convert ~ 10.3 of their bulk kinetic energy into neutrino emissions, contributing a significant fraction of the IceCube-detected neutrino flux at ≳ 300 TeV. Moreover, ≲ 200 TeV IceCube neutrinos can be accounted for by the cosmic rays produced by shocks of all SN remnants, losing energy in their host galaxies, i.e., the starburst galaxies. The future follow-up observations of high energy neutrinos and gamma-rays from nearby individual SNe II, days to weeks after the explosions, will test this model.

Keywords

neutrinos gamma rays supernovae 

References

  1. 1.
    E. Waxman, and B. Katz, arXiv: 1607.01293.Google Scholar
  2. 2.
    S. Campana, V. Mangano, A. J. Blustin, P. Brown, D. N. Burrows, G. Chincarini, J. R. Cummings, G. Cusumano, M. D. Valle, D. Malesani, P. Mészáros, J. A. Nousek, M. Page, T. Sakamoto, E. Waxman, B. Zhang, Z. G. Dai, N. Gehrels, S. Immler, F. E. Marshall, K. O. Mason, A. Moretti, P. T. O’Brien, J. P. Osborne, K. L. Page, P. Romano, P. W. A. Roming, G. Tagliaferri, L. R. Cominsky, P. Giommi, O. Godet, J. A. Kennea, H. Krimm, L. Angelini, S. D. Barthelmy, P. T. Boyd, D. M. Palmer, A. A. Wells, and N. E. White, Nature 442, 1008 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    A. M. Soderberg, E. Berger, K. L. Page, P. Schady, J. Parrent, D. Pooley, X. Y. Wang, E. O. Ofek, A. Cucchiara, A. Rau, E. Waxman, J. D. Simon, D. C. J. Bock, P. A. Milne, M. J. Page, J. C. Barentine, S. D. Barthelmy, A. P. Beardmore, M. F. Bietenholz, P. Brown, A. Burrows, D. N. Burrows, G. Byrngelson, S. B. Cenko, P. Chandra, J. R. Cummings, D. B. Fox, A. Gal-Yam, N. Gehrels, S. Immler, M. Kasliwal, A. K. H. Kong, H. A. Krimm, S. R. Kulkarni, T. J. Maccarone, P. Mészáros, E. Nakar, P. T. O’Brien, R. A. Overzier, M. de Pasquale, J. Racusin, N. Rea, and D. G. York, Nature 453, 469 (2008), arXiv: 0802.1712.ADSCrossRefGoogle Scholar
  4. 4.
    K. Schawinski, S. Justham, C. Wolf, P. Podsiadlowski, M. Sullivan, K. C. Steenbrugge, T. Bell, H. J. Roser, E. S. Walker, P. Astier, D. Balam, C. Balland, R. Carlberg, A. Conley, D. Fouchez, J. Guy, D. Hardin, I. Hook, D. A. Howell, R. Pain, K. Perrett, C. Pritchet, N. Regnault, and S. K. Yi, Science 321, 223 (2008), arXiv: 0803.3596.ADSCrossRefGoogle Scholar
  5. 5.
    E. O. Ofek, I. Rabinak, J. D. Neill, I. Arcavi, S. B. Cenko, E. Waxman, S. R. Kulkarni, A. Gal-Yam, P. E. Nugent, L. Bildsten, J. S. Bloom, A. V. Filippenko, K. Forster, D. A. Howell, J. Jacobsen, M. M. Kasliwal, N. Law, C. Martin, D. Poznanski, R. M. Quimby, K. J. Shen, M. Sullivan, R. Dekany, G. Rahmer, D. Hale, R. Smith, J. Zolkower, V. Velur, R. Walters, J. Henning, K. Bui, and D. McKenna, Astrophys. J. 724, 1396 (2010), arXiv: 1009.5378.ADSCrossRefGoogle Scholar
  6. 6.
    S. Gezari, D. O. Jones, N. E. Sanders, A. M. Soderberg, T. Hung, S. Heinis, S. J. Smartt, A. Rest, D. Scolnic, R. Chornock, E. Berger, R. J. Foley, M. E. Huber, P. Price, C. W. Stubbs, A. G. Riess, R. P. Kirshner, K. Smith, W. M. Wood-Vasey, D. Schiminovich, D. C. Martin, W. S. Burgett, K. C. Chambers, H. Flewelling, N. Kaiser, J. L. Tonry, and R. Wainscoat, Astrophys. J. 804, 28 (2015), arXiv: 1502.06964.ADSCrossRefGoogle Scholar
  7. 7.
    P. M. Garnavich, B. E. Tucker, A. Rest, E. J. Shaya, R. P. Olling, D. Kasen, and A. Villar, Astrophys. J. 820, 23 (2016), arXiv: 1603.05657.ADSCrossRefGoogle Scholar
  8. 8.
    E. Waxman, and A. Loeb, Phys. Rev. Lett. 87, 071101 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    K. Murase, T. A. Thompson, B. C. Lacki, and J. F. Beacom, Phys. Rev. D 84, 043003 (2011), arXiv: 1012.2834.ADSCrossRefGoogle Scholar
  10. 10.
    B. Katz, N. Sapir, and E. Waxman, Proc. IAU 7, 274 (2011).CrossRefGoogle Scholar
  11. 11.
    K. Kashiyama, K. Murase, S. Horiuchi, S. Gao, and P. Mészáros, Astrophys. J. 769, L6 (2013), arXiv: 1210.8147.ADSCrossRefGoogle Scholar
  12. 12.
    V. N. Zirakashvili, and V. S. Ptuskin, Astropart. Phys. 78, 28 (2016), arXiv: 1510.08387.ADSCrossRefGoogle Scholar
  13. 13.
    M. Petropoulou, S. Coenders, G. Vasilopoulos, A. Kamble, and L. Sironi, Mon. Not. R. Astron. Soc. 470, 1881 (2017), arXiv: 1705.06752.ADSCrossRefGoogle Scholar
  14. 14.
    O. Yaron, D. A. Perley, A. Gal-Yam, J. H. Groh, A. Horesh, E. O. Ofek, S. R. Kulkarni, J. Sollerman, C. Fransson, A. Rubin, P. Szabo, N. Sapir, F. Taddia, S. B. Cenko, S. Valenti, I. Arcavi, D. A. Howell, M. M. Kasliwal, P. M. Vreeswijk, D. Khazov, O. D. Fox, Y. Cao, O. Gnat, P. L. Kelly, P. E. Nugent, A. V. Filippenko, R. R. Laher, P. R. Wozniak, W. H. Lee, U. D. Rebbapragada, K. Maguire, M. Sullivan, and M. T. Soumagnac, Nat. Phys. 13, 510 (2017), arXiv: 1701.02596.CrossRefGoogle Scholar
  15. 15.
    M. G. Aartsen, et al. (IceCube Collaboration), Phys. Rev. Lett. 111, 021103 (2013), arXiv: 1304.5356.ADSCrossRefGoogle Scholar
  16. 16.
    M. G. Aartsen, et al. (IceCube Collaboration), Science 342, 1242856 (2013), arXiv: 1311.5238.CrossRefGoogle Scholar
  17. 17.
    M. G. Aartsen, et al. (IceCube Collaboration), Astrophys. J. 835, 151 (2017), arXiv: 1609.04981.ADSCrossRefGoogle Scholar
  18. 18.
    B. Wang, X. Zhao, and Z. Li, J. Cosmol. Astropart. Phys. 2014(11), 028 (2014), arXiv: 1407.2536.CrossRefGoogle Scholar
  19. 19.
    B. Wang, and Z. Li, Sci. China-Phys. Mech. Astron. 59, 619502 (2016), arXiv: 1505.04418.CrossRefGoogle Scholar
  20. 20.
    K. Murase, and E. Waxman, Phys. Rev. D 94, 103006 (2016), arXiv: 1607.01601.ADSCrossRefGoogle Scholar
  21. 21.
    B. T. Zhang, and Z. Li, J. Cosmol. Astropart. Phys. 2017(03), 024 (2017), arXiv: 1607.02211.CrossRefGoogle Scholar
  22. 22.
    M. G. Aartsen, et al. (IceCube Collaboration), Astrophys. J. 835, 45 (2017), arXiv: 1611.03874.ADSCrossRefGoogle Scholar
  23. 23.
    M. G. Aartsen, et al. (IceCube Collaboration), Astrophys. J. 843, 112 (2017), arXiv: 1702.06868.ADSCrossRefGoogle Scholar
  24. 24.
    M. G. Aartsen, et al. (IceCube Collaboration), arXiv: 1710.01191.Google Scholar
  25. 25.
    M. G. Aartsen, et al. (IceCube Collaboration), Astrophys. J. 833, 3 (2016), arXiv: 1607.08006.ADSCrossRefGoogle Scholar
  26. 26.
    K. Murase, arXiv: 1705.04750.Google Scholar
  27. 27.
    C. D. Matzner, and C. F. McKee, Astrophys. J. 510, 379 (1999).ADSCrossRefGoogle Scholar
  28. 28.
    G. Giacinti, and A. R. Bell, Mon. Not. R. Astron. Soc. 449, 3693 (2015), arXiv: 1503.04170.ADSCrossRefGoogle Scholar
  29. 29.
    R. Blandford, and D. Eichler, Phys. Rep. 154, 1 (1987).ADSCrossRefGoogle Scholar
  30. 30.
    H. J. Völk, E. G. Berezhko, and L. T. Ksenofontov, Astron. Astrophys. 433, 229 (2005).ADSCrossRefGoogle Scholar
  31. 31.
    Y. Uchiyama, F. A. Aharonian, T. Tanaka, T. Takahashi, and Y. Maeda, Nature 449, 576 (2007).ADSCrossRefGoogle Scholar
  32. 32.
    W. Wang, and Z. Li, Astrophys. J. 789, 123 (2014), arXiv: 1405.6463.ADSCrossRefGoogle Scholar
  33. 33.
    S. R. Kelner, F. A. Aharonian, and V. V. Bugayov, Phys. Rev. D 74, 034018 (2006).ADSCrossRefGoogle Scholar
  34. 34.
    V. Ptuskin, V. Zirakashvili, and E. S. Seo, Astrophys. J. 718, 31 (2010), arXiv: 1006.0034.ADSCrossRefGoogle Scholar
  35. 35.
    R. Abbasi, et al. (IceCube Collaboration), Phys. Rev. D 83, 012001 (2011), arXiv: 1010.3980.ADSCrossRefGoogle Scholar
  36. 36.
    E. Waxman, and J. Bahcall, Phys. Rev. D 59, 023002 (1998).ADSCrossRefGoogle Scholar
  37. 37.
    W. Li, R. Chornock, J. Leaman, A. V. Filippenko, D. Poznanski, X. Wang, M. Ganeshalingam, and F. Mannucci, Mon. Not. R. Astron. Soc. 412, 1473 (2011), arXiv: 1006.4613.ADSCrossRefGoogle Scholar
  38. 38.
    A. Loeb, and E. Waxman, J. Cosmol. Astropart. Phys. 2006(05), 003 (2006).CrossRefGoogle Scholar
  39. 39.
    B. Katz, E. Waxman, T. Thompson, and A. Loeb, arXiv: 1311.0287.Google Scholar
  40. 40.
    M. Ackermann, et al. (Fermi-LAT Collaboration), Astrophys. J. 755, 164 (2012), arXiv: 1206.1346.ADSCrossRefGoogle Scholar
  41. 41.
    F. K. Peng, X. Y. Wang, R. Y. Liu, Q. W. Tang, and J. F. Wang, Astrophys. J. 821, L20 (2016), arXiv: 1603.06355.ADSCrossRefGoogle Scholar
  42. 42.
    K. Murase, M. Ahlers, and B. C. Lacki, Phys. Rev. D 88, 121301 (2013), arXiv: 1306.3417.ADSCrossRefGoogle Scholar
  43. 43.
    K. Bechtol, M. Ahlers, M. D. Mauro, M. Ajello, and J. Vandenbroucke, Astrophys. J. 836, 47 (2017), arXiv: 1511.00688.ADSCrossRefGoogle Scholar
  44. 44.
    M. Ackermann, et al. (IceCube Gen2 Collaboration), arXiv: 1710.01207.Google Scholar
  45. 45.
    G. Di Sciascio, Nucl. Particle Phys. Proc. 279-281, 166 (2016), arXiv: 1602.07600.ADSCrossRefGoogle Scholar
  46. 46.
    B. Baret, and V. van Elewyck, Rep. Prog. Phys. 74, 046902 (2011).ADSCrossRefGoogle Scholar
  47. 47.
    F. Förster, T. J. Moriya, J. C. Maureira, J. P. Anderson, S. Blinnikov, F. Bufano, G. Cabrera-Vives, A. Clocchiatti, T. de Jaeger, P. A. Estévez, L. Galbany, S. González-Gaitán, G. Gräfener, M. Hamuy, E. Y. Hsiao, P. Huentelemu, P. Huijse, H. Kuncarayakti, J. Martínez, G. Medina, F. E. Olivares, G. Pignata, A. Razza, I. Reyes, J. S. Martín, R. C. Smith, E. Vera, A. K. Vivas, A. de Ugarte Postigo, S. C. Yoon, C. Ashall, M. Fraser, A. Gal-Yam, E. Kankare, L. Le Guillou, P. A. Mazzali, N. A. Walton, and D. R. Young, Nat. Astron. 2, 808 (2018).ADSCrossRefGoogle Scholar
  48. 48.
    M. G. Aartsen, et al. (IceCube, Fermi-LAT, MAGIC, AGILE, ASASSN, HAWC, H.E.S.S., INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift NuSTAR, VERITAS and VLA/17B-403 Collaborations), Science 361, eaat1378 (2018), arXiv: 1807.08816.ADSGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Astronomy, School of PhysicsPeking UniversityBeijingChina
  2. 2.Kavli Institute for Astronomy and AstrophysicsPeking UniversityBeijingChina

Personalised recommendations