Discrete scale invariance and ln(B) periodic quantum oscillations in topological semimetals

  • Robert JoyntEmail author
News & Views


  1. 1.
    L. Shubnikov, and W. J. de Haas, Proc. Royal Nether. Acad. Arts Sci. 33, 130 (1930).Google Scholar
  2. 2.
    L. Landau, Zeitsch. Phys. 64, 629 (1930).ADSCrossRefGoogle Scholar
  3. 3.
    L. Onsager, Lond. Edinb. Dubl. Phil. Mag. 43, 1006 (1952).CrossRefGoogle Scholar
  4. 4.
    K. V. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).ADSCrossRefGoogle Scholar
  5. 5.
    Y. Aharonov, and D. Bohm, Phys. Rev. 115, 485 (1959).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).ADSCrossRefGoogle Scholar
  7. 7.
    R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).ADSCrossRefGoogle Scholar
  8. 8.
    K. Behnia, L. Balicas, and Y. Kopelevich, Science 317, 1729 (2007), arXiv: 0802.1993.ADSCrossRefGoogle Scholar
  9. 9.
    H. C. Wang, H. W. Liu, Y. A. Li, Y. J. Liu, J. F. Wang, J. Liu, J. Y. Dai, Y. Wang, L. Li, J. Q. Yan, D. Mandrus, X. C. Xie, and J. Wang, Sci. Adv. 4, eaau5096 (2018), arXiv: 1704.00995.ADSCrossRefGoogle Scholar
  10. 10.
    H. W. Liu, H. Jiang, Z. Q. Wang, R. Joynt, and X. C. Xie, arXiv: 1807.02459.Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Kavli Institute for Theoretical SciencesUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations