Advertisement

Molecular beam epitaxy of superconducting PdTe2 films on topological insulator Bi2Te3

  • HuanYi Xue
  • Hao Yang
  • YanFu Wu
  • Gang Yao
  • DanDan Guan
  • ShiYong Wang
  • Hao Zheng
  • CanHua Liu
  • YaoYi LiEmail author
  • JinFeng JiaEmail author
Article
  • 17 Downloads

Abstract

Majorana fermions have been observed in topological insulator/s-wave superconductor heterostructures. To manipulate Majorana fermions, superconducting materials should be deposited on the surfaces of topological insulators. In this study, highquality superconducting PdTe2 films are deposited on the topological insulator Bi2Te3 surface using molecular beam epitaxy. The surface topography and electronic properties of PdTe2/Bi2Te3 heterostructures are investigated via in situ scanning tunneling microscopy/spectroscopy. Under Te-rich conditions, the Pd atoms presumably form PdTe2 film on Bi2Te3 surface rather than diffuse into Bi2Te3. The superconductivity of the PdTe2/Bi2Te3 heterostructure is detected at a transition temperature of ~1.4 K using the two-coil mutual inductance technique. This study proposes a method for fabricating superconducting materials on topological insulator surfaces at low doping levels, paving ways for designing nanodevices that can manipulate Majorana fermions.

Keywords

topological insulator superconductor heterostructure molecular beam epitaxy 

References

  1. 1.
    A. Y. Kitaev, Ann. Phys. 3.3. 2(2003).Google Scholar
  2. 2.
    C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008), arXiv: 0707.1889.ADSCrossRefGoogle Scholar
  3. 3.
    J. Alicea, Rep. Prog. Phys. 75, 076501 (2012), arXiv: 1202.1293.ADSCrossRefGoogle Scholar
  4. 4.
    C. W. J. Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    L. Fu, and C. L. Kane, Phys. Rev. Lett. 1.0. 096407(2008), arXiv: 0707.1692.Google Scholar
  6. 6.
    M. X. Wang, C. H. Liu, J. P. Xu, F. Yang, L. Miao, M. Y. Yao, C. L. Gao, C. Y. Shen, X. C. Ma, X. Chen, Z. A. Xu, Y. Liu, S. C. Zhang, D. Qian, J. F. Jia, and Q. K. Xue, Science 3.6. 52(2012), arXiv: 1112.1772.Google Scholar
  7. 7.
    J. P. Xu, C. H. Liu, M. X. Wang, J. F. Ge, Z. L. Liu, X. J. Yang, Y. Chen, Y. Liu, Z. A. Xu, C. L. Gao, D. Qian, F. C. Zhang, and J. F. Jia, Phys. Rev. Lett. 1.2. 217001(2014), arXiv: 1312.3713.Google Scholar
  8. 8.
    J. P. Xu, M. X. Wang, Z. L. Liu, J. F. Ge, X. J. Yang, C. H. Liu, Z. A. Xu, D. D. Guan, C. L. Gao, D. Qian, Y. Liu, Q. H. Wang, F. C. Zhang, Q. K. Xue, and J. F. Jia, Phys. Rev. Lett. 1.4. 017001(2015), arXiv: 1312.7110.Google Scholar
  9. 9.
    H. H. Sun, K. W. Zhang, L. H. Hu, C. Li, G. Y. Wang, H. Y. Ma, Z. A. Xu, C. L. Gao, D. D. Guan, Y. Y. Li, C. H. Liu, D. Qian, Y. Zhou, L. Fu, S. C. Li, F. C. Zhang, and J. F. Jia, Phys. Rev. Lett. 1.6. 257003(2016), arXiv: 1603.02549.Google Scholar
  10. 10.
    I. Belopolski, D. S. Sanchez, Y. Ishida, X. C. Pan, P. Yu, S. Y. Xu, G. Q. Chang, T. R. Chang, H. Zheng, N. Alidoust, G. Bian, M. Neupane, S. M. Huang, C. C. Lee, Y. Song, H. J. Bu, G. H. Wang, S. S. Li, G. Eda, H. T. Jeng, T. Kondo, H. Lin, Z. Liu, F. Q. Song, S. Shin, and M. Z. Hasan, Nat. Commun. 7, 13643 (2016), arXiv: 1612.05990.ADSCrossRefGoogle Scholar
  11. 11.
    I. Belopolski, S. Y. Xu, Y. Ishida, X. C. Pan, P. Yu, D. S. Sanchez, H. Zheng, M. Neupane, N. Alidoust, G. Q. Chang, T. R. Chang, Y. Wu, G. Bian, S. M. Huang, C. C. Lee, D. X. Mou, L. N. Huang, Y. Song, B. G. Wang, G. H. Wang, Y. W. Yeh, N. Yao, J. E. Rault, P. Le Fèvre, F. Bertran, H. T. Jeng, T. Kondo, A. Kaminski, H. Lin, Z. Liu, F. Q. Song, S. Shin, and M. Z. Hasan, Phys. Rev. B 94, 085127 (2016), arXiv: 1604.07079.ADSCrossRefGoogle Scholar
  12. 12.
    H. Zheng, S. Y. Xu, G. Bian, C. Guo, G. Q. Chang, D. S. Sanchez, I. Belopolski, C. C. Lee, S. M. Huang, X. Zhang, R. Sankar, N. Alidoust, T. R. Chang, F. Wu, T. Neupert, F. C. Chou, H. T. Jeng, N. Yao, A. Bansil, S. Jia, H. Lin, and M. Z. Hasan, ACS Nano 10, 1378 (2016).CrossRefGoogle Scholar
  13. 13.
    Z. Zhu, T. R. Chang, C. Y. Huang, H. Y. Pan, X. A. Nie, X. Z. Wang, Z. T. Jin, S. Y. Xu, S. M. Huang, D. D. Guan, S. Y. Wang, Y. Y. Li, C. H. Liu, D. Qian, W. Ku, F. Q. Song, H. Lin, H. Zheng, and J. F. Jia, Nat. Commun. 9, 4153 (2018).ADSCrossRefGoogle Scholar
  14. 14.
    B. W. Roberts, J. Phys. Chem. Ref. Data 5, 581 (1976).ADSCrossRefGoogle Scholar
  15. 15.
    F. C. Fei, X. Y. Bo, R. Wang, B. Wu, J. Jiang, D. Z. Fu, M. Gao, H. Zheng, Y. L. Chen, X. F. Wang, H. J. Bu, F. Q. Song, X. G. Wan, B. G. Wang, and G. H. Wang, Phys. Rev. B 96, 041201 (2017), arXiv: 1611.08112.ADSCrossRefGoogle Scholar
  16. 16.
    H. Leng, C. Paulsen, Y. K. Huang, and A. de Visser, Phys. Rev. B 96, 220506 (2017), arXiv: 1710.03862.ADSCrossRefGoogle Scholar
  17. 17.
    Y. Liu, J. Z. Zhao, L. Yu, C. T. Lin, A. J. Liang, C. Hu, Y. Ding, Y. Xu, S. L. He, L. Zhao, G. D. Liu, X. L. Dong, J. Zhang, C. T. Chen, Z. Y. Xu, H. M. Weng, X. Dai, Z. Fang, and X. J. Zhou, Chin. Phys. Lett. 32, 067303 (2015), arXiv: 1505.06642.ADSCrossRefGoogle Scholar
  18. 18.
    Y. Liu, J. Z. Zhao, L. Yu, C. T. Lin, C. Hu, D. F. Liu, Y. Y. Peng, Z. J. Xie, J. F. He, C. Y. Chen, Y. Feng, H. M. Yi, X. Liu, L. Zhao, S. L. He, G. D. Liu, X. L. Dong, J. Zhang, C. T. Chen, Z. Y. Xu, H. M. Weng, X. Dai, Z. Fang, and X. J. Zhou, Chin. Phys. B 24, 067401 (2015), arXiv: 1505.06641.ADSCrossRefGoogle Scholar
  19. 19.
    H. J. Noh, J. Jeong, E. J. Cho, K. Kim, B. I. Min, and B. G. Park, Phys. Rev. Lett. 1.9. 016401(2017), arXiv: 1612.06946.Google Scholar
  20. 20.
    O. J. Clark, M. J. Neat, K. Okawa, L. Bawden, I. Marković, F. Mazzola, J. Feng, V. Sunko, J. M. Riley, W. Meevasana, J. Fujii, I. Vobornik, T. K. Kim, M. Hoesch, T. Sasagawa, P. Wahl, M. S. Bahramy, and P. D. C. King, Phys. Rev. Lett. 1.0. 156401(2018), arXiv: 1712.04184.Google Scholar
  21. 21.
    H. Q. Huang, S. Y. Zhou, and W. H. Duan, Phys. Rev. B 94, 121117 (2016), arXiv: 1607.07965.ADSCrossRefGoogle Scholar
  22. 22.
    M. A. Pell, Y. V. Mironov, and J. A. Ibers, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 52, 1331 (1996).CrossRefGoogle Scholar
  23. 23.
    S. Nakajima, J. Phys. Chem. Solids 24, 479 (1963).ADSCrossRefGoogle Scholar
  24. 24.
    C. Liu, C. S. Lian, M. H. Liao, Y. Wang, Y. Zhong, C. Ding, W. Li, C. L. Song, K. He, X. C. Ma, W. H. Duan, D. Zhang, Y. Xu, L. L. Wang, and Q. K. Xue, Phys. Rev. Mater. 2, 094001 (2018).CrossRefGoogle Scholar
  25. 25.
    M. C. Duan, Z. L. Liu, J. F. Ge, Z. J. Tang, G. Y. Wang, Z. X. Wang, D. D. Guan, Y. Y. Li, D. Qian, C. H. Liu, and J. F. Jia, Rev. Sci. Instrum. 88, 073902 (2017).ADSCrossRefGoogle Scholar
  26. 26.
    Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, Adv. Mater. 22, 4002 (2010), arXiv: 0912.5054.CrossRefGoogle Scholar
  27. 27.
    H. Okamoto, J. Phase Equilib. Diffus. 34, 72 (2013).CrossRefGoogle Scholar
  28. 28.
    Y. Qi, S. H. Rhim, G. F. Sun, M. Weinert, and L. Li, Phys. Rev. Lett. 1.5. 085502(2010), arXiv: 0907.4187.Google Scholar
  29. 29.
    Y. Y. Li, M. X. Chen, M. Weinert, and L. Li, Nat. Commun. 5, 4311 (2014).ADSCrossRefGoogle Scholar
  30. 30.
    E. Li, R. Z. Zhang, H. Li, C. Liu, G. Li, J. O. Wang, T. Qian, H. Ding, Y. Y. Zhang, S. X. Du, X. Lin, and H. J. Gao, Chin. Phys. B 27, 086804 (2018).ADSCrossRefGoogle Scholar
  31. 31.
    Y. Liu, M. Weinert, and L. Li, Phys. Rev. Lett. 1.8. 115501(2012).Google Scholar
  32. 32.
    Y. Liu, Y. Y. Li, D. Gilks, V. K. Lazarov, M. Weinert, and L. Li, Phys. Rev. Lett. 1.0. 186804(2013).Google Scholar
  33. 33.
    Y. Liu, Y. Y. Li, S. Rajput, D. Gilks, L. Lari, P. L. Galindo, M. Weinert, V. K. Lazarov, and L. Li, Nat. Phys. 10, 294 (2014).CrossRefGoogle Scholar
  34. 34.
    T. Zhang, P. Cheng, X. Chen, J. F. Jia, X. C. Ma, K. He, L. L. Wang, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, and Q. K. Xue, Phys. Rev. Lett. 1.3. 266803(2009), arXiv: 0908.4136.Google Scholar
  35. 35.
    M. Chen, J. P. Peng, H. M. Zhang, L. L. Wang, K. He, X. C. Ma, and Q. K. Xue, Appl. Phys. Lett. 1.1. 081603(2012).Google Scholar
  36. 36.
    F. M. Qu, F. Yang, J. Shen, Y. Ding, J. Chen, Z. Q. Ji, G. T. Liu, J. Fan, X. N. Jing, C. L. Yang, and L. Lu, Sci. Rep. 2, 339 (2012), arXiv: 1112.1683.ADSCrossRefGoogle Scholar
  37. 37.
    M. Veldhorst, M. Snelder, M. Hoek, T. Gang, V. K. Guduru, X. L. Wang, U. Zeitler, W. G. van der Wiel, A. A. Golubov, H. Hilgenkamp, and A. Brinkman, Nat. Mater. 11, 417 (2012), arXiv: 1112.3527.ADSCrossRefGoogle Scholar
  38. 38.
    S. Charpentier, L. Galletti, G. Kunakova, R. Arpaia, Y. X. Song, R. Baghdadi, S. M. Wang, A. Kalaboukhov, E. Olsson, F. Tafuri, D. Golubev, J. Linder, T. Bauch, and F. Lombardi, Nat. Commun. 8, 2019 (2017), arXiv: 1805.02092.ADSCrossRefGoogle Scholar
  39. 39.
    A. Sirohi, S. Das, P. Neha, K. S. Jat, S. Patnaik, and G. Sheet, Phys. Rev. B 98, 094523 (2018), arXiv: 1806.11143.ADSCrossRefGoogle Scholar
  40. 40.
    Y. Xing, K. Zhao, P. Shan, F. P. Zheng, Y. W. Zhang, H. L. Fu, Y. Liu, M. L. Tian, C. Y. Xi, H. W. Liu, J. Feng, X. Lin, S. H. Ji, X. Chen, Q. K. Xue, and J. Wang, Nano Lett. 17, 6802 (2017), arXiv: 1707.05473.ADSCrossRefGoogle Scholar
  41. 41.
    G. Y. Wang, Z. Zhu, X. Y. Yang, L. Dong, H. Y. Ma, H. H. Sun, A. M. Li, D. D. Guan, D. Qian, C. H. Liu, Y. Y. Li, and J. F. Jia, APL Mater. 5, 126107 (2017).CrossRefGoogle Scholar
  42. 42.
    J. Buha, R. Gaspari, A. E. Del Rio Castillo, F. Bonaccorso, and L. Manna, Nano Lett. 16, 4217 (2016), arXiv: 1609.04999.ADSCrossRefGoogle Scholar
  43. 43.
    K. Schouteden, K. Govaerts, J. Debehets, U. Thupakula, T. S. Chen, Z. Li, A. Netsou, F. Q. Song, D. Lamoen, C. Van Haesendonck, B. Partoens, and K. Park, ACS Nano 10, 8778 (2016).CrossRefGoogle Scholar
  44. 44.
    B. Tiwari, R. Goyal, R. Jha, A. Dixit, and V. P. S. Awana, Supercond. Sci. Technol. 28, 055008 (2015), arXiv: 1411.1181.ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • HuanYi Xue
    • 1
  • Hao Yang
    • 1
  • YanFu Wu
    • 1
  • Gang Yao
    • 1
  • DanDan Guan
    • 1
    • 2
  • ShiYong Wang
    • 1
    • 2
  • Hao Zheng
    • 1
    • 2
  • CanHua Liu
    • 1
    • 2
  • YaoYi Li
    • 1
    • 2
    Email author
  • JinFeng Jia
    • 1
    • 2
    • 3
    Email author
  1. 1.Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Collaborative Innovation Center of Advanced MicrostructuresNanjingChina
  3. 3.Tsung-Dao Lee InstituteShanghaiChina

Personalised recommendations