Advertisement

Error-heralded generation and self-assisted complete analysis of two-photon hyperentangled Bell states through single-sided quantum-dot-cavity systems

  • YanYan Zheng
  • LeiXia Liang
  • Mei ZhangEmail author
Article
  • 6 Downloads

Abstract

Hyperentangled-Bell-state analysis (HBSA) is critical for high-capacity quantum communication. Based on a recent proposal by Wang et al. [Opt. Express 24, 28444 (2016)], we design two independent schemes for error-heralded deterministic generation and self-assisted complete HBSA of two-photon systems entangled in both polarization and spatial-mode degrees of freedom (DOFs). Unlike previous programs, we firstly propose an error-heralded block with a singly charged quantum dot inside a single-sided optical microcavity, with which errors due to imperfect interactions between photons and quantum dot systems can be heralded. The error-heralded block, ensures that the fidelity of the two schemes for hyperentangled-Bell-state generation and complete HBSA reaches unity. Moreover, hyperentanglement makes it possible to analyze the polarization state with the assistance of the measured spatial-mode state. The self-assisted mechanism of HBSA greatly simplifies the analytical process and significantly relaxes the requirements of nonlinearities. Therefore, these schemes promise to be implemented more easily in experiments, taking a step closer to long-distance high-capacity quantum communication.

Keywords

quantum hyperentanglement error-heralded self-assisted high-capacity quantum communication 

References

  1. 1.
    M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).zbMATHGoogle Scholar
  2. 2.
    C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    X. H. Li, F. G. Deng, and H. Y. Zhou, Phys. Rev. A 78, 022321 (2008), arXiv: 0808.0042.ADSCrossRefGoogle Scholar
  5. 5.
    C. H. Bennett, and S. J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Hillery, V. Bužek, and A. Berthiaume, Phys. Rev. A 59, 1829 (1999).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    G. L. Long, and X. S. Liu, Phys. Rev. A 65, 032302 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    F. G. Deng, G. L. Long, and X. S. Liu, Phys. Rev. A 68, 042317 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, Phys. Rev. A 71, 044305 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    F. Z. Wu, G. J. Yang, H. B. Wang, J. Xiong, F. Alzahrani, A. Hobiny, and F. G. Deng, Sci. China-Phys. Mech. Astron. 60, 120313 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Phys. Rev. Lett. 118, 220501 (2017), arXiv: 1609.09184.ADSCrossRefGoogle Scholar
  12. 12.
    F. Zhu, W. Zhang, Y. Sheng, and Y. Huang, Sci. Bull. 62, 1519 (2017).CrossRefGoogle Scholar
  13. 13.
    S. S. Chen, L. Zhou, W. Zhong, and Y. B. Sheng, Sci. China-Phys. Mech. Astron. 61, 090312 (2018).CrossRefGoogle Scholar
  14. 14.
    Y. X. Jiang, P. L. Guo, C. Y. Gao, H. B.Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, Sci. China-Phys. Mech. Astron. 60, 120312 (2017), arXiv: 1804.00873.ADSCrossRefGoogle Scholar
  15. 15.
    F. Wang, M. X. Luo, G. Xu, X. B. Chen, and Y. X. Yang, Sci. China-Phys. Mech. Astron. 61, 060312 (2018).CrossRefGoogle Scholar
  16. 16.
    L. Vaidman, and N. Yoran, Phys. Rev. A 59, 116 (1999).ADSCrossRefGoogle Scholar
  17. 17.
    N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, Phys. Rev. A 59, 3295 (1999).ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    P. G. Kwiat, and H. Weinfurter, Phys. Rev. A 58, R2623 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    S. P. Walborn, S. Pádua, and C. H. Monken, Phys. Rev. A 68, 042313 (2003).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, Phys. Rev. Lett. 96, 190501 (2006).ADSCrossRefGoogle Scholar
  21. 21.
    M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, Phys. Rev. A 75, 042317 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    J. T. Barreiro, T. C. Wei, and P. G. Kwiat, Nat. Phys. 4, 282 (2008).CrossRefGoogle Scholar
  23. 23.
    J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, Phys. Rev. Lett. 95, 260501 (2005).ADSCrossRefGoogle Scholar
  24. 24.
    M. Barbieri, C. Cinelli, F. De Martini, and P. Mataloni, Fortschr. Phys. 52, 1102 (2004).CrossRefGoogle Scholar
  25. 25.
    M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, Phys. Rev. A 72, 052110 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    D. Bhatti, J. von Zanthier, and G. S. Agarwal, Phys. Rev. A 91, 062303 (2015), arXiv: 1502.01906.ADSCrossRefGoogle Scholar
  27. 27.
    A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, Phys. Rev. Lett. 102, 153902 (2009), arXiv: 0809.4575.ADSCrossRefGoogle Scholar
  28. 28.
    P. G. Kwiat, J. Modern Opt. 44, 2173 (1997).ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, Phys. Rev. A 79, 030301(R) (2009), arXiv: 0810.4461.ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    F. G. Deng, B. C. Ren, and X. H. Li, Sci. Bull. 62, 46 (2017).CrossRefGoogle Scholar
  31. 31.
    B. C. Ren, G. Y. Wang, and F. G. Deng, Phys. Rev. A 91, 032328 (2015), arXiv: 1411.0274.ADSCrossRefGoogle Scholar
  32. 32.
    T. Li, and G. L. Long, Phys. Rev. A 94, 022343 (2016).ADSCrossRefGoogle Scholar
  33. 33.
    H. R.Wei, F. G. Deng, and G. L. Long, Opt. Express 24, 18619 (2016), arXiv: 1610.02530.ADSCrossRefGoogle Scholar
  34. 34.
    B. C. Ren, and F. G. Deng, Opt. Express 25, 10863 (2017).ADSCrossRefGoogle Scholar
  35. 35.
    G. Y. Wang, Q. Liu, and F. G. Deng, Phys. Rev. A 94, 032319 (2016), arXiv: 1607.00082.ADSCrossRefGoogle Scholar
  36. 36.
    B. C. Ren, and G. L. Long, Opt. Express 22, 6547 (2014).ADSCrossRefGoogle Scholar
  37. 37.
    B. C. Ren, and G. L. Long, Sci. Rep. 5, 16444 (2015).ADSCrossRefGoogle Scholar
  38. 38.
    B. C. Ren, H. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, Ann. Phys. 385, 86 (2017).ADSCrossRefGoogle Scholar
  39. 39.
    X. Li, and S. Ghose, Laser Phys. Lett. 11, 125201 (2014), arXiv: 1601.03755.ADSCrossRefGoogle Scholar
  40. 40.
    X. H. Li, and S. Ghose, Phys. Rev. A 91, 062302 (2015), arXiv: 1502.02891.ADSCrossRefGoogle Scholar
  41. 41.
    X. H. Li, and S. Ghose, Opt. Express 23, 3550 (2015), arXiv: 1601.03756.ADSCrossRefGoogle Scholar
  42. 42.
    T. C.Wei, J. T. Barreiro, and P. G. Kwiat, Phys. Rev. A 75, 060305(R) (2007).ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    N. Pisenti, C. P. E. Gaebler, and T. W. Lynn, Phys. Rev. A 84, 022340 (2011), arXiv: 1109.1584.ADSCrossRefGoogle Scholar
  44. 44.
    Y. B. Sheng, F. G. Deng, and G. L. Long, Phys. Rev. A 82, 032318 (2010), arXiv: 1103.0230.ADSCrossRefGoogle Scholar
  45. 45.
    B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, Opt. Express 20, 24664 (2012), arXiv: 1207.0168.ADSCrossRefGoogle Scholar
  46. 46.
    T. J. Wang, Y. Lu, and G. L. Long, Phys. Rev. A 86, 042337 (2012).ADSCrossRefGoogle Scholar
  47. 47.
    Q. Liu, and M. Zhang, Phys. Rev. A 91, 062321 (2015), arXiv: 1507.06108.ADSCrossRefGoogle Scholar
  48. 48.
    X. H. Li, and S. Ghose, Phys. Rev. A 93, 022302 (2016), arXiv: 1601.02029.ADSCrossRefGoogle Scholar
  49. 49.
    G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, Opt. Express 24, 28444 (2016), arXiv: 1611.03352.ADSCrossRefGoogle Scholar
  50. 50.
    Q. Liu, G. Y. Wang, Q. Ai, M. Zhang, and F. G. Deng, Sci. Rep. 6, 22016 (2016), arXiv: 1511.00094.ADSCrossRefGoogle Scholar
  51. 51.
    X. H. Li, and S. Ghose, Phys. Rev. A 96, 020303(R) (2017).ADSCrossRefGoogle Scholar
  52. 52.
    C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, Phys. Rev. B 80, 205326 (2009), arXiv: 0910.4549.ADSCrossRefGoogle Scholar
  53. 53.
    C. Wang, Y. Zhang, and G. Jin, Phys. Rev. A 84, 032307 (2011).ADSCrossRefGoogle Scholar
  54. 54.
    H. R. Wei, and F. G. Deng, Phys. Rev. A 87, 022305 (2013), arXiv: 1302.0046.ADSCrossRefGoogle Scholar
  55. 55.
    T. Li, G. J. Yang, and F. G. Deng, Phys. Rev. A 93, 012302 (2016), arXiv: 1409.0270.ADSCrossRefGoogle Scholar
  56. 56.
    C. Y. Hu, A. Young, J. L. O’Brien,W. J. Munro, and J. G. Rarity, Phys. Rev. B 78, 085307 (2008), arXiv: 0708.2019.ADSCrossRefGoogle Scholar
  57. 57.
    C. Y. Hu, W. J. Munro, and J. G. Rarity, Phys. Rev. B 78, 125318 (2008), arXiv: 0711.1431.ADSCrossRefGoogle Scholar
  58. 58.
    T. Li, and F. G. Deng, Phys. Rev. A 94, 062310 (2016), arXiv: 1511.00087.ADSCrossRefGoogle Scholar
  59. 59.
    T. Li, J. C. Gao, F. G. Deng, and G. L. Long, Ann. Phys. 391, 150 (2018).ADSCrossRefGoogle Scholar
  60. 60.
    J. H. An, M. Feng, and C. H. Oh, Phys. Rev. A 79, 032303 (2009), arXiv: 0902.1372.ADSCrossRefGoogle Scholar
  61. 61.
    J. R. Petta, Science 309, 2180 (2005).ADSCrossRefGoogle Scholar
  62. 62.
    A. Greilich, Science 313, 341 (2006).ADSCrossRefGoogle Scholar
  63. 63.
    M. Atature, Science 312, 551 (2006).ADSCrossRefGoogle Scholar
  64. 64.
    J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, Science 320, 349 (2008).ADSCrossRefGoogle Scholar
  65. 65.
    D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, Nature 456, 218 (2008).ADSCrossRefGoogle Scholar
  66. 66.
    R. J. Warburton, C. S. D¨urr, K. Karrai, J. P. Kotthaus, G. Medeiros-Ribeiro, and P. M. Petroff, Phys. Rev. Lett. 79, 5282 (1997).ADSCrossRefGoogle Scholar
  67. 67.
    C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, and J. Kossut, Phys. Rev. B 58, R1766 (1998).ADSCrossRefGoogle Scholar
  68. 68.
    D. F. Walls, and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994).CrossRefzbMATHGoogle Scholar
  69. 69.
    Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, Phys. Rev. Lett. 109, 160504 (2012), arXiv: 1206.6265.ADSCrossRefGoogle Scholar
  70. 70.
    P. Borri,W. Langbein, S. Schneider, U.Woggon, R. Sellin, D. Ouyang, and D. Bimberg, Phys. Rev. Lett. 87, 157401 (2001).ADSCrossRefGoogle Scholar
  71. 71.
    D. Birkedal, K. Leosson, and J. M. Hvam, Phys. Rev. Lett. 87, 227401 (2001).ADSCrossRefGoogle Scholar
  72. 72.
    W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. Wieck, Phys. Rev. B 70, 033301 (2004).ADSCrossRefGoogle Scholar
  73. 73.
    D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, Phys. Rev. B 76, 241306 (2007), arXiv: 0705.1466.ADSCrossRefGoogle Scholar
  74. 74.
    B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, Nature 451, 441 (2008).ADSCrossRefGoogle Scholar
  75. 75.
    D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, Science 325, 70 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Applied Optics Beijing Area Major LaboratoryBeijing Normal UniversityBeijingChina

Personalised recommendations