Existence criteria and validity of plate models for graphene-like materials

  • JiaPeng Chen
  • Biao WangEmail author


Graphene-like (GL) materials have enriched the application prospects of two-dimensional materials by virtue of their various structures and properties. However, the following theoretical issues remain unsolved: how can stable GL materials exist and is plate idealization valid for any GL materials? Here we answer these questions based on an atomistic potential-based approach. The existence criteria for GL materials with three common structures, including planar honeycomb (PH), buckled honeycomb (BH), and honeycomb MX2 (2H-MX2) structures, were established. Moreover, the validity of classic linear-elastic plate models for these materials was examined. A validity factor, which represents the validity of using thin plate models to investigate the overall mechanical response of GL sheets, was defined. We determined that 2H-MX2 sheets can approximately be modeled as thin plates for arbitrary loadings, unlike PH and BH sheets.


grapheme-like material existence criterion plate idealization 


  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    K. S. Novoselov, Rev. Mod. Phys. 83, 837 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    P. R. Wallace, Phys. Rev. 71, 622 (1947).ADSCrossRefGoogle Scholar
  4. 4.
    M. Xu, T. Liang, M. Shi, and H. Chen, Chem. Rev. 113, 3766 (2013).CrossRefGoogle Scholar
  5. 5.
    B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, and K. Wu, Nano Lett. 12, 3507 (2012), arXiv: 1203.2745.ADSCrossRefGoogle Scholar
  6. 6.
    N. Alem, R. Erni, C. Kisielowski, M. D. Rossell, W. Gannett, and A. Zettl, Phys. Rev. B 80, 155425 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, Nat. Rev. Mater. 2, 17033 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    L. Li, S. Lu, J. Pan, Z. Qin, Y. Wang, Y. Wang, G. Cao, S. Du, and H. J. Gao, Adv. Mater. 26, 4820 (2014).CrossRefGoogle Scholar
  9. 9.
    F. F. Zhu, W. J. Chen, Y. Xu, C. L. Gao, D. D. Guan, C. H. Liu, D. Qian, S. C. Zhang, and J. F. Jia, Nat. Mater. 14, 1020 (2015), arXiv: 1506.01601.ADSCrossRefGoogle Scholar
  10. 10.
    P. Joensen, R. F. Frindt, and S. R. Morrison, Mater. Res. Bull. 21, 457 (1986).CrossRefGoogle Scholar
  11. 11.
    X. Wang, Y. Gong, G. Shi, W. L. Chow, K. Keyshar, G. Ye, R. Vajtai, J. Lou, Z. Liu, E. Ringe, B. K. Tay, and P. M. Ajayan, ACS Nano 8, 5125 (2014).CrossRefGoogle Scholar
  12. 12.
    J. Chen, B. Liu, Y. Liu, W. Tang, C. T. Nai, L. Li, J. Zheng, L. Gao, Y. Zheng, H. S. Shin, H. Y. Jeong, and K. P. Loh, Adv. Mater. 27, 6722 (2015).CrossRefGoogle Scholar
  13. 13.
    M. Hafeez, L. Gan, H. Li, Y. Ma, and T. Zhai, Adv. Mater. 28, 8296 (2016).CrossRefGoogle Scholar
  14. 14.
    P. Miró, M. Audiffred, and T. Heine, Chem. Soc. Rev. 43, 6537 (2014).CrossRefGoogle Scholar
  15. 15.
    C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nat. Nanotech. 5, 722 (2010), arXiv: 1005.4917.ADSCrossRefGoogle Scholar
  16. 16.
    B. Radisavljevic, M. B. Whitwick, and A. Kis, ACS Nano 5, 9934 (2011).CrossRefGoogle Scholar
  17. 17.
    Q. Peng, J. Crean, A. K. Dearden, C. Huang, X. Wen, S. P. A. Bordas, and S. De, Mod. Phys. Lett. B 27, 1330017 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    A. Pakdel, Y. Bando, and D. Golberg, Chem. Soc. Rev. 43, 934 (2014).CrossRefGoogle Scholar
  19. 19.
    H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger, and S. Ciraci, Phys. Rev. B 80, 155453 (2009), arXiv: 0907.4350.ADSCrossRefGoogle Scholar
  20. 20.
    K. A. N. Duerloo, Y. Li, and E. J. Reed, Nat. Commun. 5, 4214 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    Z. P. Xu, and Q. S. Zheng, Sci. China-Phys. Mech. Astron. 61, 074601 (2018).ADSCrossRefGoogle Scholar
  22. 22.
    W. Yang, H. T. Wang, T. F. Li, and S. X. Qu, Sci. China-Phys. Mech. Astron. 62, 14601 (2019).ADSCrossRefGoogle Scholar
  23. 23.
    K. N. Kudin, G. E. Scuseria, and B. I. Yakobson, Phys. Rev. B 64, 235406 (2001).ADSCrossRefGoogle Scholar
  24. 24.
    S. Kitipornchai, X. Q. He, and K. M. Liew, Phys. Rev. B 72, 075443 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    J. Peng, J. Wu, K. C. Hwang, J. Song, and Y. Huang, J. Mech. Phys. Solids 56, 2213 (2008).ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    M. M. Shokrieh, and R. Rafiee, Mater. Des. 31, 790 (2010).CrossRefGoogle Scholar
  27. 27.
    Y. Liu, Z. Xu, and Q. Zheng, J. Mech. Phys. Solids 59, 1613 (2011).ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Genoese, A. Genoese, N. L. Rizzi, and G. Salerno, Compos. Part BEng. 115, 316 (2017).CrossRefGoogle Scholar
  29. 29.
    Z. Q. Wang, and Y. P. Zhao, Sci. China-Phys. Mech. Astron. 54, 948 (2011).ADSCrossRefGoogle Scholar
  30. 30.
    Y. Huang, J. Wu, and K. C. Hwang, Phys. Rev. B 74, 245413 (2006).ADSCrossRefGoogle Scholar
  31. 31.
    O. A. Shenderova, V. V. Zhirnov, and D. W. Brenner, Critical Rev. Solid State Mater. Sci. 27, 227 (2002).ADSCrossRefGoogle Scholar
  32. 32.
    D. B. Zhang, E. Akatyeva, and T. Dumitric., Phys. Rev. Lett. 106, 255503 (2011).ADSCrossRefGoogle Scholar
  33. 33.
    E. Gao, and Z. Xu, J. Appl. Mech 82, 121012 (2015).ADSCrossRefGoogle Scholar
  34. 34.
    J. Chen, B. Wang, and Y. Hu, J. Mech. Phys. Solids 107, 451 (2017), arXiv: 1610.01467.ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    M. Born, Math. Proc. Camb. Phil. Soc. 36, 160 (1940).ADSCrossRefGoogle Scholar
  36. 36.
    Y. C. Fung, Foundations of Solid Mechanics (Prentice Hall, Englewood, 1965), pp. 341–359.Google Scholar
  37. 37.
    M. S. Daw, and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).ADSCrossRefGoogle Scholar
  38. 38.
    F. H. Stillinger, and T. A. Weber, Phys. Rev. B 31, 5262 (1985).ADSCrossRefGoogle Scholar
  39. 39.
    J. A. Harrison, M. Fallet, K. E. Ryan, B. L. Mooney, M. T. Knippenberg, and J. D. Schall, Model. Simul. Mater. Sci. Eng. 23, 074003 (2015).ADSCrossRefGoogle Scholar
  40. 40.
    J. Jiang, and Y. Zhou, Handbook of Stillinger-Weber Potential Parameters for Two-Dimensional Atomic Crystals (IntechOpen, Londo, 2017).CrossRefGoogle Scholar
  41. 41.
    G. C. Abell, Phys. Rev. B 31, 6184 (1985).ADSCrossRefGoogle Scholar
  42. 42.
    J. Tersoff, Phys. Rev. Lett. 56, 632 (1986).ADSCrossRefGoogle Scholar
  43. 43.
    D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, J. Phys.-Condens. Matter 14, 783 (2002).ADSCrossRefGoogle Scholar
  44. 44.
    M. Born, and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford, 1959), pp. 120–139.Google Scholar
  45. 45.
    M. Arroyo, and T. Belytschko, J. Mech. Phys. Solids 50, 1941 (2002).ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    J. Wu, K. C. Hwang, and Y. Huang, J. Mech. Phys. Solids 56, 279 (2008).ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    C. Sevik, A. Kinaci, J. B. Haskins, and T. Çağın, Phys. Rev. B 84, 085409 (2011).ADSCrossRefGoogle Scholar
  48. 48.
    P. Erhart, and K. Albe, Phys. Rev. B 71, 035211 (2005).ADSCrossRefGoogle Scholar
  49. 49.
    J. Nord, K. Albe, P. Erhart, and K. Nordlund, J. Phys.-Condens. Matter 15, 5649 (2003).ADSCrossRefGoogle Scholar
  50. 50.
    E. Ventsel, and T. Krauthammer, Thin Plates and Shells (Marcel Dekker, New York, 2001), pp. 17–23.CrossRefGoogle Scholar
  51. 51.
    H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P. D. Ye, ACS Nano 8, 4033 (2014).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electronics and Information TechnologySun Yat-Sen UniversityGuangzhouChina
  2. 2.School of PhysicsSun Yat-Sen UniversityGuangzhouChina
  3. 3.Sino-French Institute of Nuclear Engineering and TechnologySun Yat-Sen UniversityGuangzhouChina

Personalised recommendations