Superconductivity, electronic phase diagram, and pressure effect in Sr1−xPrxFBiS2

  • Wei You
  • Lin Li
  • HaiYang Yang
  • JiaLu Wang
  • HongYing Mao
  • Li Zhang
  • ChuanYing Xi
  • Jie Cheng
  • YongKang Luo
  • JianHui DaiEmail author
  • YuKe LiEmail author


Based on a combination of X-ray diffraction, electrical transports, magnetic susceptibility, specific heat, and pressure-effect measurements, we report the results of experiments on a series of BiS2-based Sr1−xPrxFBiS2 superconductors with the maximum Tc of 2.7 K for x=0.5 and at ambient pressure. Superconductivity appears only for 0.4≤x≤0.7 whereas the normal-state resistivity shows the semiconducting-like behaviors. The magnetic susceptibility χ(T) displays the low superconducting shielding volume fractions and C(T) shows no distinguishable anomaly near Tc, which suggests a filamentary superconductivity in the Pr-doped polycrystalline samples. By varying doping concentrations, an electronic phase diagram is established. Upon applying pressure on the optimally doped Sr0.5Pr0.5FBiS2 system, Tc is abruptly enhanced, reaches 8.5 K at the critical pressure of Pc=1.5 GPa, and increases slightly to 9.7 K at 2.5 GPa. Accompanied by the enhancement of superconductivity from the low- to the high-Tc phases, the normal state undergoes a semiconductor-to-metal transition when under pressure. This scenario may be linked to enhanced overlap of the Bi-6p and S-p orbitals, which contributes to the enhanced superconductivity above Pc. The pressuretemperature phase diagram for Sr0.5Pr0.5FBiS2 is also presented.


BiS2-based superconductors superconductivity phase diagram pressure effect 


  1. 1.
    Y. Mizuguchi, H. Fujihisa, Y. Gotoh, K. Suzuki, H. Usui, K. Kuroki, S. Demura, Y. Takano, H. Izawa, and O. Miura, Phys. Rev. B 86, 220510(R) (2012), arXiv: 1207.3145.ADSCrossRefGoogle Scholar
  2. 2.
    Y. Mizuguchi, S. Demura, K. Deguchi, Y. Takano, H. Fujihisa, Y. Gotoh, H. Izawa, and O. Miura, J. Phys. Soc. Jpn. 81, 114725 (2012), arXiv: 1207.3558.ADSCrossRefGoogle Scholar
  3. 3.
    S. Demura, Y. Mizuguchi, K. Deguchi, H. Okazaki, H. Hara, T. Watanabe, S. James Denholme, M. Fujioka, T. Ozaki, H. Fujihisa, Y. Gotoh, O. Miura, T. Yamaguchi, H. Takeya, and Y. Takano, J. Phys. Soc. Jpn. 82, 033708 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    V. P. S. Awana, A. Kumar, R. Jha, S. Kumar Singh, A. Pal, A. Shruti, J. Saha, and S. Patnaik, Solid State Commun. 157, 21 (2013), arXiv: 1207.6845.ADSCrossRefGoogle Scholar
  5. 5.
    J. Xing, S. Li, X. Ding, H. Yang, and H. H. Wen, Phys. Rev. B 86, 214518 (2012), arXiv: 1208.5000.ADSCrossRefGoogle Scholar
  6. 6.
    R. Jha, A. Kumar, S. K. Singh, and V. P. S. Awana, J. Supercond. Nov. Magn. 26, 499 (2013).CrossRefGoogle Scholar
  7. 7.
    X. Lin, X. Ni, B. Chen, X. Xu, X. Yang, J. Dai, Y. Li, X. Yang, Y. Luo, Q. Tao, G. Cao, and Z. Xu, Phys. Rev. B 87, 020504 (2013), arXiv: 1301.2380.ADSCrossRefGoogle Scholar
  8. 8.
    L. Li, Y. Li, Y. Jin, H. Huang, B. Chen, X. Xu, J. Dai, L. Zhang, X. Yang, H. Zhai, G. Cao, and Z. Xu, Phys. Rev. B 91, 014508 (2015), arXiv: 1407.3711.ADSCrossRefGoogle Scholar
  9. 9.
    H. Lei, K. Wang, M. Abeykoon, E. S. Bozin, and C. Petrovic, Inorg. Chem. 52, 10685 (2013).CrossRefGoogle Scholar
  10. 10.
    B. Li, Z. W. Xing, and G. Q. Huang, Europhys. Lett. 101, 47002 (2013), arXiv: 1210.1743.ADSCrossRefGoogle Scholar
  11. 11.
    Y. Li, X. Lin, L. Li, N. Zhou, X. Xu, C. Cao, J. Dai, L. Zhang, Y. Luo, W. Jiao, Q. Tao, G. Cao, and Z. Xu, Supercond. Sci. Technol. 27, 035009 (2014), arXiv: 1310.1695.ADSCrossRefGoogle Scholar
  12. 12.
    C. T. Wolowiec, B. D. White, I. Jeon, D. Yazici, K. Huang, and M. B. Maple, J. Phys.-Condens. Matter 25, 422201 (2013), arXiv: 1308.1072.ADSCrossRefGoogle Scholar
  13. 13.
    D. Yazici, K. Huang, B. D. White, I. Jeon, V. W. Burnett, A. J. Friedman, I. K. Lum, M. Nallaiyan, S. Spagna, and M. B. Maple, Phys. Rev. B 87, 174512 (2013), arXiv: 1303.6216.ADSCrossRefGoogle Scholar
  14. 14.
    C. T. Wolowiec, D. Yazici, B. D. White, K. Huang, and M. B. Maple, Phys. Rev. B 88, 064503 (2013), arXiv: 1307.4157.ADSCrossRefGoogle Scholar
  15. 15.
    R. Jha, H. Kishan, and V. P. S. Awana, Solid State Commun. 194, 6 (2014), arXiv: 1405.5976.ADSCrossRefGoogle Scholar
  16. 16.
    Y. Luo, H. F. Zhai, P. Zhang, Z. A. Xu, G. H. Cao, and J. D. Thompson, Phys. Rev. B 90, 220510 (2014), arXiv: 1412.5446.ADSCrossRefGoogle Scholar
  17. 17.
    T. Tomita, M. Ebata, H. Soeda, H. Takahashi, H. Fujihisa, Y. Gotoh, Y. Mizuguchi, H. Izawa, O. Miura, S. Demura, K. Deguchi, and Y. Takano, J. Phys. Soc. Jpn. 83, 063704 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    B. Chen, C. Uher, L. Iordanidis, and M. G. Kanatzidis, Chem. Mater. 9, 1655 (1997).CrossRefGoogle Scholar
  19. 19.
    R. Jha, B. Tiwari, and V. P. S. Awana, J. Appl. Phys. 117, 013901 (2015), arXiv: 1407.3105.ADSCrossRefGoogle Scholar
  20. 20.
    Y. Mizuguchi, T. Hiroi, J. Kajitani, H. Takatsu, H. Kadowaki, and O. Miura, J. Phys. Soc. Jpn. 83, 053704 (2014), arXiv: 1402.5189.ADSCrossRefGoogle Scholar
  21. 21.
    K. Nagasaka, A. Nishida, R. Jha, J. Kajitani, O. Miura, R. Higashinaka, T. D. Matsuda, Y. Aoki, A. Miura, C. Moriyoshi, Y. Kuroiwa, H. Usui, K. Kuroki, and Y. Mizuguchi, J. Phys. Soc. Jpn. 86, 074701 (2017), arXiv: 1702.07485.ADSCrossRefGoogle Scholar
  22. 22.
    Y. Mizuguchi, A. Miura, J. Kajitani, T. Hiroi, O. Miura, K. Tadanaga, N. Kumada, E. Magome, C. Moriyoshi, and Y. Kuroiwa, Sci. Rep. 5, 14968 (2015), arXiv: 1504.01208.ADSCrossRefGoogle Scholar
  23. 23.
    H. F. Zhai, Z. T. Tang, H. Jiang, K. Xu, K. Zhang, P. Zhang, J. K. Bao, Y. L. Sun, W. H. Jiao, I. Nowik, I. Felner, Y. K. Li, X. F. Xu, Q. Tao, C. M. Feng, Z. A. Xu, and G. H. Cao, Phys. Rev. B 90, 064518 (2014), arXiv: 1407.7132.ADSCrossRefGoogle Scholar
  24. 24.
    Y. Li, Y. Luo, L. Li, B. Chen, X. Xu, J. Dai, X. Yang, L. Zhang, G. Cao, and Z. Xu, J. Phys.-Condens. Matter 26, 425701 (2014).ADSCrossRefGoogle Scholar
  25. 25.
    C. Y. Guo, Y. Chen, M. Smidman, S. A. Chen, W. B. Jiang, H. F. Zhai, Y. F. Wang, G. H. Cao, J. M. Chen, X. Lu, and H. Q. Yuan, Phys. Rev. B 91, 214512 (2015), arXiv: 1505.04704.ADSCrossRefGoogle Scholar
  26. 26.
    J. Liu, S. Li, Y. Li, X. Zhu, and H. H. Wen, Phys. Rev. B 90, 094507 (2014), arXiv: 1407.5904.ADSCrossRefGoogle Scholar
  27. 27.
    H. Sakai, D. Kotajima, K. Saito, H. Wadati, Y. Wakisaka, M. Mizumaki, K. Nitta, Y. Tokura, and S. Ishiwata, J. Phys. Soc. Jpn. 83, 014709 (2014), arXiv: 1311.5117.ADSCrossRefGoogle Scholar
  28. 28.
    C. Morice, E. Artacho, S. E. Dutton, H. J. Kim, and S. S. Saxena, J. Phys.-Condens. Matter 28, 345504 (2016), arXiv: 1312.2615.CrossRefGoogle Scholar
  29. 29.
    S. Li, H. Yang, D. L. Fang, Z. Y. Wang, J. Tao, X. X. Ding, and H. H. Wen, Sci. China-Phys. Mech. Astron. 56, 2019 (2013), arXiv: 1304.3354.ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wei You
    • 1
  • Lin Li
    • 1
  • HaiYang Yang
    • 1
  • JiaLu Wang
    • 1
  • HongYing Mao
    • 1
  • Li Zhang
    • 5
  • ChuanYing Xi
    • 3
  • Jie Cheng
    • 4
  • YongKang Luo
    • 2
  • JianHui Dai
    • 1
    Email author
  • YuKe Li
    • 1
    Email author
  1. 1.Department of Physics and Hangzhou Key Laboratory of Quantum MatterHangzhou Normal UniversityHangzhouChina
  2. 2.Wuhan National High Magnetic Field Center School of PhysicsHuazhong University of Science and TechnologyWuhanChina
  3. 3.High Magnetic Field LaboratoryChinese Academy of SciencesHefeiChina
  4. 4.College of Science, Center of Advanced Functional CeramicsNanjing University of Posts and TelecommunicationsNanjingChina
  5. 5.Department of PhysicsChina Jiliang UniversityHangzhouChina

Personalised recommendations