Advertisement

Quantum Fisher information width in quantum metrology

  • Bo Liu
  • GuoLong Li
  • YanMing Che
  • Jie Chen
  • XiaoGuang WangEmail author
Article

Abstract

In scenarios of quantum metrology, the unitary parametrization process often depends on space directions. How to characterize the sensitivity of parameter estimation to space directions is a natural question. We propose the concept of the quantum Fisher information (QFI) width, which is the difference between the maximum and minimum values of the QFI, to quantitatively study the sensitivity. We find that Fock states, the bosonic coherent states, and the displaced Fock states all have zero widths, indicating that QFI is completely inert over all directions, while the width for the spin state with all spins down or up is equal to the number of particles, so this concept will enable us to choose appropriate directions to make unitary transformation to obtain larger QFI. The QFI width of the displaced quantum states is found to be independent of the magnitude of the displacement for both spin and bosonic systems. We also find some relations between the QFI width and squeezing parameters.

Keywords

quantum metrology quantum Fisher information quantum Fisher information width 

References

  1. 1.
    V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photon. 5, 222 (2011), arXiv: 1102.2318.ADSCrossRefGoogle Scholar
  2. 2.
    M. G. A. Paris, Int. J. Quantum Inform. 07, 125 (2009).CrossRefGoogle Scholar
  3. 3.
    B. M. Escher, R. L. de Matos Filho, and L. Davidovich, Nat. Phys. 7, 406 (2011), arXiv: 1201.1693.CrossRefGoogle Scholar
  4. 4.
    M. Tsang, New J. Phys. 15, 073005 (2013), arXiv: 1301.5733.ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    H. Yuan, Phys. Rev. Lett. 117, 160801 (2016), arXiv: 1601.04466.ADSCrossRefGoogle Scholar
  6. 6.
    Y. Yao, L. Ge, X. Xiao, X. Wang, and C. P. Sun, Phys. Rev. A 90, 062113 (2014), arXiv: 1409.2200.ADSCrossRefGoogle Scholar
  7. 7.
    G. Toth, and I. Apellaniz, J. Phys. A-Math. Theor. 47, 424006 (2014), arXiv: 1405.4878.ADSCrossRefGoogle Scholar
  8. 8.
    J. Liu, and H. Yuan, Phys. Rev. A 96, 042114 (2017), arXiv: 1710.06741.ADSCrossRefGoogle Scholar
  9. 9.
    J. Liu, and H. Yuan, Phys. Rev. A 96, 012117 (2017), arXiv: 1604.04856.ADSCrossRefGoogle Scholar
  10. 10.
    J. Liu, J. Chen, X. X. Jing, and X. Wang, J. Phys. A-Math. Theor. 49, 275302 (2016), arXiv: 1501.04290.CrossRefGoogle Scholar
  11. 11.
    M. G. Genoni, S. Olivares, and M. G. A. Paris, Phys. Rev. Lett. 106, 153603 (2011), arXiv: 1012.1123.ADSCrossRefGoogle Scholar
  12. 12.
    R. Demkowicz-Dobrzanski, and L. Maccone, Phys. Rev. Lett. 113, 250801 (2014), arXiv: 1407.2934.ADSCrossRefGoogle Scholar
  13. 13.
    D. Braun, and J. Martin, Nat. Commun. 2, 223 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    L. Pezzé, and A. Smerzi, Phys. Rev. Lett. 110, 163604 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    M. Ahmadi, D. E. Bruschi, C. Sabin, G. Adesso, and I. Fuentes, Sci. Rep. 4, 4996 (2014), arXiv: 1307.7082.ADSCrossRefGoogle Scholar
  16. 16.
    X. Nie, J. Huang, Z. Li, W. Zheng, C. Lee, X. Peng, and J. Du, Sci. Bull. 63, 469 (2018).CrossRefGoogle Scholar
  17. 17.
    R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, Nat. Commun. 1, 121 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    M. Snadden, J. McGuirk, P. Bouyer, K. Haritos, and M. Kasevich, Phys. Rev. Lett. 81, 971 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    A. Peters, K. Y. Chung, and S. Chu, Nature 400, 849 (1999).ADSCrossRefGoogle Scholar
  20. 20.
    S. D. Huver, C. F. Wildfeuer, and J. P. Dowling, Phys. Rev. A 78, 063828 (2008), arXiv: 0805.0296.ADSCrossRefGoogle Scholar
  21. 21.
    R. T. Glasser, H. Cable, J. P. Dowling, F. De Martini, F. Sciarrino, and C. Vitelli, Phys. Rev. A 78, 012339 (2008), arXiv: 0804.1786.ADSCrossRefGoogle Scholar
  22. 22.
    R. W. Boyd, and J. P. Dowling, Quantum Inf. Process. 11, 891 (2012).CrossRefGoogle Scholar
  23. 23.
    M. A. Taylor, and W. P. Bowen, Phys. Rep. 615, 1 (2016).ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    S. L. Braunstein, and C. M. Caves, Phys. Rev. Lett. 72, 3439 (1994).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    C. W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976).zbMATHGoogle Scholar
  26. 26.
    A. S. Holevo, Probabilistic and Statistical Aspects ofQuantum Theory (North-Holland, Amsterdam, 1982).Google Scholar
  27. 27.
    M. Hübner, Phys. Lett. A 163, 239 (1992).ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    R. A. Fisher, Math. Proc. Camb. Phil. Soc. 22, 700 (1925).ADSCrossRefGoogle Scholar
  29. 29.
    S. L. Braunstein, C. M. Caves, and G. J. Milburn, Ann. Phys. 247, 135 (1996).ADSCrossRefGoogle Scholar
  30. 30.
    B. Yurke, S. L. McCall, and J. R. Klauder, Phys. Rev. A 33, 4033 (1986).ADSCrossRefGoogle Scholar
  31. 31.
    J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, Phys. Rev. A 54, R4649 (1996).Google Scholar
  32. 32.
    J. P. Dowling, Phys. Rev. A 57, 4736 (1998).ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330 (2004).ADSCrossRefGoogle Scholar
  34. 34.
    Y. Watanabe, T. Sagawa, and M. Ueda, Phys. Rev. Lett. 104, 020401 (2010), arXiv: 0906.4463.ADSCrossRefGoogle Scholar
  35. 35.
    J. Liu, X. X. Jing, W. Zhong, and X. G. Wang, Commun. Theor. Phys. 61, 45 (2014), arXiv: 1312.6910.ADSCrossRefGoogle Scholar
  36. 36.
    Y. M. Zhang, X. W. Li, W. Yang, and G. R. Jin, Phys. Rev. A 88, 043832 (2013), arXiv: 1307.7353.ADSCrossRefGoogle Scholar
  37. 37.
    B. L. Ye, B. Li, Z. X. Wang, X. Li-Jost, and S. M. Fei, Sci. China-Phys. Mech. Astron. 61, 110312 (2018), arXiv: 1808.03769.ADSCrossRefGoogle Scholar
  38. 38.
    J. Liu, and H. Yuan, New J. Phys. 18, 093009 (2016), arXiv: 1609.01618.ADSCrossRefGoogle Scholar
  39. 39.
    S. Pang, and T. A. Brun, Phys. Rev. A 90, 022117 (2014), arXiv: 1407.6091.ADSCrossRefGoogle Scholar
  40. 40.
    J. Ma, Y. Huang, X. Wang, and C. P. Sun, Phys. Rev. A 84, 022302 (2011).ADSCrossRefGoogle Scholar
  41. 41.
    Z. Sun, J. Ma, X. M. Lu, and X. Wang, Phys. Rev. A 82, 022306 (2010).ADSCrossRefGoogle Scholar
  42. 42.
    W. Zhong, J. Liu, J. Ma, and X. G. Wang, Chin. Phys. B 23, 060302 (2014), arXiv: 1309.4842.ADSCrossRefGoogle Scholar
  43. 43.
    T. Yu, and J. H. Eberly, Phys. Rev. Lett. 93, 140404 (2004).ADSCrossRefGoogle Scholar
  44. 44.
    J. Laurat, K. S. Choi, H. Deng, C. W. Chou, and H. J. Kimble, Phys. Rev. Lett. 99, 180504 (2007), arXiv: 0706.0528.ADSCrossRefGoogle Scholar
  45. 45.
    M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. S. Ribeiro, and L. Davidovich, Science 316, 579 (2007).ADSCrossRefGoogle Scholar
  46. 46.
    A. Salles, F. de Melo, M. P. Almeida, M. Hor-Meyll, S. P. Walborn, P. H. S. Ribeiro, and L. Davidovich, Phys. Rev. A 78, 022322 (2008), arXiv: 0804.4556.ADSCrossRefGoogle Scholar
  47. 47.
    J. Liu, X. X. Jing, and X. Wang, Sci. Rep. 5, 8565 (2015), arXiv: 1409.4057.CrossRefGoogle Scholar
  48. 48.
    M. Kitagawa, and M. Ueda, Phys. Rev. A 47, 5138 (1993).ADSCrossRefGoogle Scholar
  49. 49.
    D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, Phys. Rev. A 46, R6797 (1992).Google Scholar
  50. 50.
    V. Meyer, M. A. Rowe, D. Kielpinski, C. A. Sackett, W. M. Itano, C. Monroe, and D. J. Wineland, Phys. Rev. Lett. 86, 5870 (2001).ADSCrossRefGoogle Scholar
  51. 51.
    D. Leibfried, Science 304, 1476 (2004).ADSCrossRefGoogle Scholar
  52. 52.
    J. Ma, X. Wang, C. P. Sun, and F. Nori, Phys. Rep. 509, 89 (2011), arXiv: 1011.2978.ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    M. Hayashi, Quantum Information: An Introduction (Springer, Berlin, Heidelberg, 2006).zbMATHGoogle Scholar
  54. 54.
    A. Sørensen, and K. Mølmer, Phys. Rev. Lett. 83, 2274 (1999).ADSCrossRefGoogle Scholar
  55. 55.
    X. Wang, A. S. Sørensen, and K. Mølmer, Phys. Rev. A 64, 053815 (2001).ADSCrossRefGoogle Scholar
  56. 56.
    X. Wang, and B. C. Sanders, Phys. Rev. A 68, 012101 (2003).ADSCrossRefGoogle Scholar
  57. 57.
    X. Wang, A. Miranowicz, Y. Liu, C. P. Sun, and F. Nori, Phys. Rev. A 81, 022106 (2010), arXiv: 0909.4834.ADSCrossRefGoogle Scholar
  58. 58.
    X. Wang, and B. C. Sanders, Phys. Rev. A 68, 033821 (2003).ADSCrossRefGoogle Scholar
  59. 59.
    C. Gross, T. Zibold, E. Nicklas, J. Estève, and M. K. Oberthaler, Nature 464, 1165 (2010), arXiv: 1009.2374.ADSCrossRefGoogle Scholar
  60. 60.
    G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, Phys. Rev. Lett. 82, 4619 (1999).ADSCrossRefGoogle Scholar
  61. 61.
    M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 76, 1800 (1996).ADSCrossRefGoogle Scholar
  62. 62.
    C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland, Science 272, 1131 (1996).ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    M. W. Noel, and C. R. Stroud, Jr., Phys. Rev. Lett. 77, 1913 (1996).ADSCrossRefGoogle Scholar
  64. 64.
    C. C. Gerry, and R. Grobe, Phys. Rev. A 56, 2390 (1997).ADSCrossRefGoogle Scholar
  65. 65.
    A. Luks, V. Perinova, and J. Perina, Opt. Commun. 67, 149 (1988).ADSCrossRefGoogle Scholar
  66. 66.
    A. Miranowicz, M. Bartkowiak, X. Wang, Y. Liu, and F. Nori, Phys. Rev. A 82, 013824 (2010), arXiv: 1004.3182.ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bo Liu
    • 1
    • 2
  • GuoLong Li
    • 1
    • 3
  • YanMing Che
    • 1
  • Jie Chen
    • 1
  • XiaoGuang Wang
    • 1
    Email author
  1. 1.Department of PhysicsZhejiang UniversityHangzhouChina
  2. 2.School of PhysicsChangchun Normal UniversityChangchunChina
  3. 3.School of SciencesHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations