Advertisement

Pressure-induced Lifshitz transition in the type II Dirac semimetal PtTe2

  • FengLiang Liu
  • JiaHeng Li
  • KeNan Zhang
  • Shang Peng
  • HuaQing Huang
  • MingZhe Yan
  • NaNa Li
  • Qian Zhang
  • SongHao Guo
  • XuJie Lü
  • Peng Cai
  • LiFeng Yin
  • ShuYun Zhou
  • WenHui DuanEmail author
  • Jian ShenEmail author
  • WenGe YangEmail author
Article

Abstract

Numerous exotic properties have been discovered in Dirac Semimetals (DSMs) and Weyl Semimetals (WSMs). In a given DSM/ WSM, the Dirac/Weyl nodes usually coexist with other bulk states, making their respective contribution elusive. In this work, we distinguish the role of bulk states from the tilted Dirac nodes on the transport properties in DSMs. Specifically, we applied pressure to a type-II DSM material, PtTe2, and studied its pressure modified electronic and lattice structure systematically by using in situ transport measurements and X-ray diffraction (XRD). A pressure-induced transition at about 20 GPa is revealed in the transport properties, while the layered lattice structure is robust against pressure as illustrated in XRD measurement results. Density functional theory (DFT) calculations suggest that this is originated from the Lifshitz transition in the bulk states. Our findings provide evidence to identify the bulk states’ influence on transport from the topologically-protected DSM states in the DSM material.

Keywords

Dirac semimetals diamond anvil cells X-ray diffraction transport measurement band structure calculation 

Supplementary material

11433_2018_9319_MOESM1_ESM.doc (1.7 mb)
Pressure-Induced Lifshitz Transition in the Type II Dirac Semimetal PtTe2

References

  1. 1.
    X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011), arXiv: 1007.0016.ADSCrossRefGoogle Scholar
  2. 2.
    H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Phys. Rev. X 5, 011029 (2015), arXiv: 1501.00060.Google Scholar
  3. 3.
    C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, Y. Skourski, J. Wosnitza, Z. Liu, Y. Chen, W. Schnelle, H. Borrmann, Y. Grin, C. Felser, and B. Yan, Nat. Phys. 11, 645 (2015), arXiv: 1502.04361.CrossRefGoogle Scholar
  4. 4.
    F. Arnold, C. Shekhar, S. C. Wu, Y. Sun, R. D. Dos Reis, N. Kumar, M. Naumann, M. O. Ajeesh, M. Schmidt, A. G. Grushin, J. H. Bardarson, M. Baenitz, D. Sokolov, H. Borrmann, M. Nicklas, C. Felser, E. Hassinger, and B. Yan, Nat. Commun. 7, 11615 (2016), arXiv: 1506.06577.ADSCrossRefGoogle Scholar
  5. 5.
    Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosić, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla, Nat. Phys. 12, 550 (2016), arXiv: 1412.6543.CrossRefGoogle Scholar
  6. 6.
    H. Weng, X. Dai, and Z. Fang, J. Phys.-Condens. Matter 28, 303001 (2016), arXiv: 1603.04744.CrossRefGoogle Scholar
  7. 7.
    B. Yan, and C. Felser, Annu. Rev. Condens. Matter Phys. 8, 337 (2017), arXiv: 1611.04182.ADSCrossRefGoogle Scholar
  8. 8.
    T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, Nat. Mater. 14, 280 (2015), arXiv: 1404.7794.ADSCrossRefGoogle Scholar
  9. 9.
    M. Neupane, S. Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T. R. Chang, H. T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, Nat. Commun. 5, 3786 (2014), arXiv: 1309.7892.CrossRefGoogle Scholar
  10. 10.
    L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Y. Li, Phys. Rev. Lett. 113, 246402 (2014), arXiv: 1404.2557.ADSCrossRefGoogle Scholar
  11. 11.
    J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M. Hirschberger, W. Wang, R. J. Cava, and N. P. Ong, Science 350, 413 (2015).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    L. He, Y. Jia, S. Zhang, X. Hong, C. Jin, and S. Li, npj Quant. Mater. 1, 16014 (2016).CrossRefGoogle Scholar
  13. 13.
    A. A. Soluyanov, D. Gresch, Z. Wang, Q. S. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Nature 527, 495 (2015), arXiv: 1507.01603.ADSCrossRefGoogle Scholar
  14. 14.
    M. Yan, H. Huang, K. Zhang, E. Wang, W. Yao, K. Deng, G. Wan, H. Zhang, M. Arita, H. Yang, Z. Sun, H. Yao, Y. Wu, S. Fan, W. Duan, and S. Zhou, Nat. Commun. 8, 257 (2017), arXiv: 1607.03643.ADSCrossRefGoogle Scholar
  15. 15.
    H. Huang, S. Zhou, and W. Duan, Phys. Rev. B 94, 121117(R) (2016), arXiv: 1607.07965.Google Scholar
  16. 16.
    K. Zhang, M. Yan, H. Zhang, H. Huang, M. Arita, Z. Sun, W. Duan, Y. Wu, and S. Zhou, Phys. Rev. B 96, 125102 (2017), arXiv: 1703.04242.ADSCrossRefGoogle Scholar
  17. 17.
    H. J. Noh, J. Jeong, E. J. Cho, K. Kim, B. I. Min, and B. G. Park, Phys. Rev. Lett. 119, 016401 (2017), arXiv: 1612.06946.ADSCrossRefGoogle Scholar
  18. 18.
    R. C. Xiao, P. L. Gong, Q. S. Wu, W. J. Lu, M. J. Wei, J. Y. Li, H. Y. Lv, X. Luo, P. Tong, X. B. Zhu, and Y. P. Sun, Phys. Rev. B 96, 075101 (2017), arXiv: 1705.05708.ADSCrossRefGoogle Scholar
  19. 19.
    H. Leng, C. Paulsen, Y. K. Huang, and A. de Visser, Phys. Rev. B 96, 220506(R) (2017), arXiv: 1710.03862.Google Scholar
  20. 20.
    C. Cheng, J. T. Sun, M. Liu, X. R. Chen, and S. Meng, Phys. Rev. Mater. 1, 074804 (2017).CrossRefGoogle Scholar
  21. 21.
    Y. Li, Y. Xia, S. A. Ekahana, N. Kumar, J. Jiang, L. Yang, C. Chen, C. Liu, B. Yan, C. Felser, G. Li, Z. Liu, and Y. Chen, Phys. Rev. Mater. 1, 074202 (2017).CrossRefGoogle Scholar
  22. 22.
    M. A. ElGhazali, P. G. Naumov, H. Mirhosseini, V. Süß, L. Müchler, W. Schnelle, C. Felser, and S. A. Medvedev, Phys. Rev. B 96, 060509 (R) (2017).Google Scholar
  23. 23.
    H. K. Mao, B. Chen, J. Chen, K. Li, J. F. Lin, W. Yang, and H. Zheng, Matter Radiat. Extrem. 1, 59 (2016).CrossRefGoogle Scholar
  24. 24.
    G. H. Han, D. L. Duong, D. H. Keum, S. J. Yun, and Y. H. Lee, Chem. Rev. 118, 6297 (2018).CrossRefGoogle Scholar
  25. 25.
    Y. Zhou, X. Chen, N. Li, R. Zhang, X. Wang, C. An, Y. Zhou, X. Pan, F. Song, B. Wang, W. Yang, Z. Yang, and Y. Zhang, AIP Adv. 6, 075008 (2016).ADSGoogle Scholar
  26. 26.
    D. Kang, Y. Zhou, W. Yi, C. Yang, J. Guo, Y. Shi, S. Zhang, Z. Wang, C. Zhang, S. Jiang, A. Li, K. Yang, Q. Wu, G. Zhang, L. Sun, and Z. Zhao, Nat. Commun. 6, 7804 (2015), arXiv: 1502.00493.ADSCrossRefGoogle Scholar
  27. 27.
    X. C. Pan, X. Chen, H. Liu, Y. Feng, Z. Wei, Y. Zhou, Z. Chi, L. Pi, F. Yen, F. Song, X. Wan, Z. Yang, B. Wang, G. Wang, and Y. Zhang, Nat. Commun. 6, 7805 (2015), arXiv: 1501.07394.CrossRefGoogle Scholar
  28. 28.
    Y. Qi, P. G. Naumov, M. N. Ali, C. R. Rajamathi, W. Schnelle, O. Barkalov, M. Hanfland, S. C. Wu, C. Shekhar, Y. Sun, V. Süß, M. Schmidt, U. Schwarz, E. Pippel, P. Werner, R. Hillebrand, T. Förster, E. Kampert, S. Parkin, R. J. Cava, C. Felser, B. Yan, and S. A. Medvedev, Nat. Commun. 7, 11038 (2016), arXiv: 1508.03502.ADSCrossRefGoogle Scholar
  29. 29.
    Y. Qi, W. Shi, P. G. Naumov, N. Kumar, W. Schnelle, O. Barkalov, C. Shekhar, H. Borrmann, C. Felser, B. Yan, and S. A. Medvedev, Phys. Rev. B 94, 054517 (2016), arXiv: 1602.08616.ADSCrossRefGoogle Scholar
  30. 30.
    Y. Zhou, J. Wu, W. Ning, N. Li, Y. Du, X. Chen, R. Zhang, Z. Chi, X. Wang, X. Zhu, P. Lu, C. Ji, X. Wan, Z. Yang, J. Sun, W. Yang, M. Tian, Y. Zhang, and H. K. Mao, Proc. Natl. Acad. Sci. USA 113, 2904 (2016), arXiv: 1505.02658.ADSCrossRefGoogle Scholar
  31. 31.
    S. Zhang, Q. Wu, L. Schoop, M. N. Ali, Y. Shi, N. Ni, Q. Gibson, S. Jiang, V. Sidorov, W. Yi, J. Guo, Y. Zhou, D. Wu, P. Gao, D. Gu, C. Zhang, S. Jiang, K. Yang, A. Li, Y. Li, X. Li, J. Liu, X. Dai, Z. Fang, R. J. Cava, L. Sun, and Z. Zhao, Phys. Rev. B 91, 165133 (2015), arXiv: 1410.3213.ADSCrossRefGoogle Scholar
  32. 32.
    Y. Zhou, P. Lu, Y. Du, X. Zhu, G. Zhang, R. Zhang, D. Shao, X. Chen, X. Wang, M. Tian, J. Sun, X. Wan, Z. Yang, W. Yang, Y. Zhang, and D. Xing, Phys. Rev. Lett. 117, 146402 (2016).ADSCrossRefGoogle Scholar
  33. 33.
    H. K. Mao, P. M. Bell, K. J. Dunn, R. M. Chrenko, and R. C. DeVries, Rev. Sci. Instrum. 50, 1002 (1979).ADSCrossRefGoogle Scholar
  34. 34.
    H. K. Mao, J. Xu, and P. M. Bell, J. Geophys. Res. 91, 4673 (1986).ADSCrossRefGoogle Scholar
  35. 35.
    C. Prescher, and V. B. Prakapenka, High Pressure Res. 35, 223 (2015).ADSCrossRefGoogle Scholar
  36. 36.
    B. H. Toby, and R. B. Von Dreele, J Appl Cryst. 46, 544 (2013).CrossRefGoogle Scholar
  37. 37.
    H. M. Rietveld, J Appl Cryst. 2, 65 (1969).CrossRefGoogle Scholar
  38. 38.
    G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).ADSCrossRefGoogle Scholar
  39. 39.
    D. Fu, X. Bo, F. Fei, B. Wu, M. Gao, X. Wang, M. Naveed, S. A. Shah, H. Bu, B. Wang, L. Cao, W. Zou, X. Wan, and F. Song, Phys. Rev. B 97, 245109 (2018).ADSCrossRefGoogle Scholar
  40. 40.
    P. L. Cai, J. Hu, L. P. He, J. Pan, X. C. Hong, Z. Zhang, J. Zhang, J. Wei, Z. Q. Mao, and S. Y. Li, Phys. Rev. Lett. 115, 057202 (2015), arXiv: 1412.8298.ADSCrossRefGoogle Scholar
  41. 41.
    Y. S. Oh, J. J. Yang, Y. Horibe, and S. W. Cheong, Phys. Rev. Lett. 110, 127209 (2013), arXiv: 1303.4772.ADSCrossRefGoogle Scholar
  42. 42.
    C. Soulard, P. E. Petit, P. Deniard, M. Evain, S. Jobic, M. H. Whangbo, and A. C. Dhaussy, J. Solid State Chem. 178, 2008 (2005).ADSCrossRefGoogle Scholar
  43. 43.
    Y. Zhang, C. Wang, L. Yu, G. Liu, A. Liang, J. Huang, S. Nie, X. Sun, Y. Zhang, B. Shen, J. Liu, H. Weng, L. Zhao, G. Chen, X. Jia, C. Hu, Y. Ding, W. Zhao, Q. Gao, C. Li, S. He, L. Zhao, F. Zhang, S. Zhang, F. Yang, Z. Wang, Q. Peng, X. Dai, Z. Fang, Z. Xu, C. Chen, and X. J. Zhou, Nat. Commun. 8, 15512 (2017), arXiv: 1602.03576.ADSCrossRefGoogle Scholar
  44. 44.
    H. Chi, C. Zhang, G. Gu, D. E. Kharzeev, X. Dai, and Q. Li, New J. Phys. 19, 015005 (2017), arXiv: 1701.04737.ADSCrossRefGoogle Scholar
  45. 45.
    J. Banhart, Phys. Rev. B 53, 7128 (1996).ADSCrossRefGoogle Scholar
  46. 46.
    W. Zheng, R. Schönemann, N. Aryal, Q. Zhou, D. Rhodes, Y. C. Chiu, K. W. Chen, E. Kampert, T. Förster, T. J. Martin, G. T. McCandless, J. Y. Chan, E. Manousakis, and L. Balicas, Phys. Rev. B 97, 235154 (2018), arXiv: 1805.00087.ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • FengLiang Liu
    • 1
    • 2
  • JiaHeng Li
    • 3
  • KeNan Zhang
    • 3
  • Shang Peng
    • 2
  • HuaQing Huang
    • 3
  • MingZhe Yan
    • 3
  • NaNa Li
    • 2
  • Qian Zhang
    • 2
  • SongHao Guo
    • 2
  • XuJie Lü
    • 2
  • Peng Cai
    • 1
    • 4
    • 5
  • LiFeng Yin
    • 1
    • 4
    • 5
  • ShuYun Zhou
    • 3
  • WenHui Duan
    • 3
    Email author
  • Jian Shen
    • 1
    • 4
    • 5
    Email author
  • WenGe Yang
    • 2
    • 6
    Email author
  1. 1.State Key Laboratory of Surface Physics and Department of PhysicsFudan UniversityShanghaiChina
  2. 2.Center for High Pressure Science and Technology Advanced Research (HPSTAR)ShanghaiChina
  3. 3.State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijingChina
  4. 4.Institute for Nanoelectronic Devices and Quantum ComputingFudan UniversityShanghaiChina
  5. 5.Collaborative Innovation Center of Advanced MicrostructuresNanjingChina
  6. 6.High Pressure Synergetic Consortium (HPSynC), Geophysical LaboratoryCarnegie Institution of WashingtonArgonneUSA

Personalised recommendations