Advertisement

Numerical study of Klein quantum dots in graphene systems

  • JiaoJiao Zhou
  • ShuGuang Cheng
  • WenLong You
  • Hua JiangEmail author
Article

Abstract

The Klein quantum dot (KQD) refers to a quantum dot (QD) having quasi-bound states with a finite trapping time, which has been observed in experiments focusing on graphene recently. In this paper, we develop a numerical method to study the quasi- bound states of the KQD in graphene systems. By investigating the variation of the local density of states (LDOS) in a circular QD, we obtain the dependence of the quasi-bound states on the QD parameters, such as the electron energy, the radius and the confined potential. Based on these results, not only the experimental phenomena can be well explained, but also the crossover between quasi-bound states and real bound states is demonstrated when the intervalley scattering is included. We further study the evolution of the LDOS as the shape of the KQD varies from a circle to a semicircle. The ways of forming closed interference paths of carriers are suppressed during the deformation, and thus the corresponding quasi-bound states are eliminated. Our study reveals the mechanism of the whispering gallery mode on the quasi-bound states in graphene systems.

Keywords

Klein quantum dot quasi-bound state graphene whispering gallery mode 

References

  1. 1.
    M. Bacon, S. J. Bradley, and T. Nann, Part. Part. Syst. Charact. 31, 415 (2014).CrossRefGoogle Scholar
  2. 2.
    W. Zhou, and J. J. Coleman, Curr. Opin. Solid State Mater. Sci. 20, 352 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    H. Zhong, Y. Zhou, Y. Yang, C. Yang, and Y. Li, J. Phys. Chem. C 111, 6538 (2007).CrossRefGoogle Scholar
  4. 4.
    Y. Lei, W. Cai, and G. Wilde, Prog. Mater. Sci. 52, 465 (2007).CrossRefGoogle Scholar
  5. 5.
    D. Leonard, J. Vac. Sci. Technol. B 12, 1063 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, Natur. 404, 59 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    S. De Franceschi, S. Sasaki, J. M. Elzerman, W. G. van der Wiel, S. Tarucha, and L. P. Kouwenhoven, Phys. Rev. Lett. 86, 878 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    A. Calogeracos, and N. Dombey, Contemp. Phys. 40, 313 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    V. V. Cheianov, and V. I. Fal’ko, Phys. Rev.. 74, 041403 (2006).CrossRefGoogle Scholar
  10. 10.
    M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys. 2, 620 (2006).CrossRefGoogle Scholar
  11. 11.
    S. K. Hämäläinen, Z. Sun, M. P. Boneschanscher, A. Uppstu, M. Ijäs, A. Harju, D. Vanmaekelbergh, and P. Liljeroth, Phys. Rev. Lett. 107, 236803 (2011), arXiv: 1110.4208.ADSCrossRefGoogle Scholar
  12. 12.
    S. Phark, J. Borme, A. L. Vanegas, M. Corbetta, D. Sander, and J. Kirschner, ACS Nano 5, 8162 (2011).CrossRefGoogle Scholar
  13. 13.
    L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, Scienc. 320, 356 (2008), arXiv: 0801.0160.ADSCrossRefGoogle Scholar
  14. 14.
    C. Stampfer, S. Fringes, J. Güttinger, F. Molitor, C. Volk, B. Terres, J. Dauber, S. Engels, S. Schnez, A. Jacobsen, S. Dröscher, T. Ihn, and K. Ensslin, Front. Phys. 6, 271 (2011).CrossRefGoogle Scholar
  15. 15.
    D. Subramaniam, F. Libisch, Y. Li, C. Pauly, V. Geringer, R. Reiter, T. Mashoff, M. Liebmann, J. Burgdörfer, C. Busse, T. Michely, R. Mazzarello, M. Pratzer, and M. Morgenstern, Phys. Rev. Lett. 108, 046801 (2012), arXiv: 1104.3875.ADSCrossRefGoogle Scholar
  16. 16.
    H. M. Abdullah, M. van der Donck, H. Bahlouli, F. M. Peeters, and B. van Duppen, Appl. Phys. Lett. 112, 213101 (2018), arXiv: 1805.10619.ADSCrossRefGoogle Scholar
  17. 17.
    T. Espinosa-Ortega, I. A. Luk’yanchuk, and Y. G. Rubo, Superlatt. Microstruct. 49, 283 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    Z. Z. Zhang, K. Chang, and F. M. Peeters, Phys. Rev.. 77, 235411 (2008), arXiv: 0805.0454.CrossRefGoogle Scholar
  19. 19.
    S. Schnez, K. Ensslin, M. Sigrist, and T. Ihn, Phys. Rev.. 78, 195427 (2008), arXiv: 0810.3216.CrossRefGoogle Scholar
  20. 20.
    M. Zarenia, A. Chaves, G. A. Farias, and F. M. Peeters, Phys. Rev.. 84, 245403 (2011), arXiv: 1111.5702.CrossRefGoogle Scholar
  21. 21.
    M. Mirzakhani, M. Zarenia, S. A. Ketabi, D. R. da Costa, and F. M. Peeters, Phys. Rev.. 93, 165410 (2016).CrossRefGoogle Scholar
  22. 22.
    M. Mirzakhani, M. Zarenia, D. R. da Costa, S. A. Ketabi, and F. M. Peeters, Phys. Rev.. 94, 165423 (2016).CrossRefGoogle Scholar
  23. 23.
    P. G. Silvestrov, and K. B. Efetov, Phys. Rev. Lett. 98, 016802 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    H. Y. Chen, V. Apalkov, and T. Chakraborty, Phys. Rev. Lett. 98, 186803 (2007).ADSCrossRefGoogle Scholar
  25. 25.
    W. Jolie, F. Craes, M. Petrovic, N. Atodiresei, V. Caciuc, S. Blügel, M. Kralj, T. Michely, and C. Busse, Phys. Rev.. 89, 155435 (2014).CrossRefGoogle Scholar
  26. 26.
    C. Gutierrez, L. Brown, C. J. Kim, J. Park, and A. N. Pasupathy, Nat, Phys. 12, 1069 (2016).CrossRefGoogle Scholar
  27. 27.
    J. Lee, D. Wong, J. Velasco Jr., J. F. Rodriguez-Nieva, S. Kahn, H. Z. Tsai, T. Taniguchi, K. Watanabe, A. Zettl, F. Wang, L. S. Levitov, and M. F. Crommie, Nat. Phys. 12, 1032 (2016), arXiv: 1606.03654.CrossRefGoogle Scholar
  28. 28.
    F. Ghahari, D. Walkup, C. Gutierrez, J. F. Rodriguez-Nieva, Y. Zhao, J. Wyrick, F. D. Natterer, W. G. Cullen, K. Watanabe, T. Taniguchi, L. S. Levitov, N. B. Zhitenev, and J. A. Stroscio, Scienc. 356, 845 (2017), arXiv: 1705.11117.ADSCrossRefGoogle Scholar
  29. 29.
    Y. Zhao, J. Wyrick, F. D. Natterer, J. F. Rodriguez-Nieva, C. Lewandowski, K. Watanabe, T. Taniguchi, L. S. Levitov, N. B. Zhitenev, and J. A. Stroscio, Scienc. 348, 672 (2015), arXiv: 1505.02732.ADSCrossRefGoogle Scholar
  30. 30.
    M. R. Foreman, J. D. Swaim, and F. Vollmer, Adv. Opt. Photon. 7,168 (2015).Google Scholar
  31. 31.
    J. Velasco Jr., L. Ju, D. Wong, S. Kahn, J. Lee, H. Z. Tsai, C. Germany, S. Wickenburg, J. Lu, T. Taniguchi, K. Watanabe, A. Zettl, F. Wang, and M. F. Crommie, Nano Lett. 16, 1620 (2016), arXiv: 1602.03245.ADSCrossRefGoogle Scholar
  32. 32.
    N. M. Freitag, L. A. Chizhova, P. Nemes-Incze, C. R. Woods, R. V. Gorbachev, Y. Cao, A. K. Geim, K. S. Novoselov, J. Burgdorfer, F. Libisch, and M. Morgenstern, Nano Lett. 16, 5798 (2016), arXiv: 1608.02972.ADSCrossRefGoogle Scholar
  33. 33.
    K. K. Bai, J. B. Qiao, H. Jiang, H. Liu, and L. He, Phys. Rev.. 95, 201406 (2017), arXiv: 1702.03035.CrossRefGoogle Scholar
  34. 34.
    K. K. Bai, J. J. Zhou, Y. C. Wei, J. B. Qiao, Y. W. Liu, H. W. Liu, H. Jiang, and L. He, Phys. Rev.. 97, 045413 (2018).CrossRefGoogle Scholar
  35. 35.
    J. B. Qiao, H. Jiang, H. Liu, H. Yang, N. Yang, K. Y. Qiao, and L. He, Phys. Rev.. 95, 081409 (2017), arXiv: 1702.03026.CrossRefGoogle Scholar
  36. 36.
    J. H. Bardarson, M. Titov, and P. W. Brouwer, Phys. Rev. Lett. 102, 226803 (2009), arXiv: 0902.4499.ADSCrossRefGoogle Scholar
  37. 37.
    J. Cserti, A. Palyi, and C. Peterfalvi, Phys. Rev. Lett. 99, 246801 (2007), arXiv: 0706.4034.ADSCrossRefGoogle Scholar
  38. 38.
    C. A. Downing, D. A. Stone, and M. E. Portnoi, Phys. Rev.. 84, 155437 (2011), arXiv: 1105.0891.CrossRefGoogle Scholar
  39. 39.
    A. Matulis, and F. M. Peeters, Phys. Rev. B 77, 115423 (2008), arXiv: 0711.4446.ADSCrossRefGoogle Scholar
  40. 40.
    C. Schulz, R. L. Heinisch, and H. Fehske, Quant. Matt. 4, 346 (2015).CrossRefGoogle Scholar
  41. 41.
    C. Schulz, R. L. Heinisch, and H. Fehske, Phys. Rev.. 91, 045130 (2015), arXiv: 1412.3134.ADSCrossRefGoogle Scholar
  42. 42.
    J. S. Wu, and M. M. Fogler, Phys. Rev.. 90, 235402 (2014), arXiv: 1410.0272.CrossRefGoogle Scholar
  43. 43.
    J. Zhou, S. Cheng, W. L. You, and H. Jiang, Sci. Rep. 6, 23211 (2016).ADSCrossRefGoogle Scholar
  44. 44.
    F. Libisch, C. Stampfer, and J. Burgdorfer, Phys. Rev.. 79, 115423 (2009), arXiv: 0808.3095.CrossRefGoogle Scholar
  45. 45.
    S. Zhu, Y. Huang, N. N. Klimov, D. B. Newell, N. B. Zhitenev, J. A. Stroscio, S. D. Solares, and T. Li, Phys. Rev.. 90, 075426 (2014), arXiv: 1505.02805.CrossRefGoogle Scholar
  46. 46.
    J. B. Qiao, Y. Gong, W. J. Zuo, Y. C. Wei, D. L. Ma, H. Yang, N. Yang, K. Y. Qiao, J. A. Shi, L. Gu, and L. He, Phys. Rev.. 95, 201403 (2017), arXiv: 1703.02183.CrossRefGoogle Scholar
  47. 47.
    J. U. Nockel, A. D. Stone, and R. K. Chang, Opt. Lett. 19,1693 (1994).Google Scholar
  48. 48.
    A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009), arXiv: 0709.1163.ADSCrossRefGoogle Scholar
  49. 49.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Natur. 438, 197 (2005).ADSCrossRefGoogle Scholar
  50. 50.
    D. H. Lee, and J. D. Joannopoulos, Phys. Rev. B 23, 4997 (1981)ADSCrossRefGoogle Scholar
  51. 50a.
    M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, J. Phys. F-Met. Phys. 14, 1205 (1984). 15, 851 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • JiaoJiao Zhou
    • 1
  • ShuGuang Cheng
    • 2
  • WenLong You
    • 1
  • Hua Jiang
    • 1
    Email author
  1. 1.School of Physical Science and TechnologySoochow UniversitySuzhouChina
  2. 2.Department of PhysicsNorthwest UniversityXi’anChina

Personalised recommendations