Advertisement

Numerical investigation of plane Couette flow with weak spanwise rotation

  • YuHan Huang
  • ZhenHua XiaEmail author
  • MinPing Wan
  • YiPeng Shi
  • ShiYi Chen
Article

Abstract

Direct numerical simulation of rotating plane Couette flow (RPCF) at Rew = 1300 and Ro = 0.02 was performed with different mesh resolutions and different sizes of computation domain. Our results showed that a grid resolution in wall units with Δx+ = 8.51, Δz+ = 4.26, Δy+|min = 0.0873 and Δy+|max = 3.89 is fine enough to simulate the problem at the present parameters. The streamwise length Lx and spanwise length Lz of the computational box have different impacts on the flow statistics, where the statistics were converged if Lx is longer than 8πh, while no converged results were obtained for different Lz. More importantly, our results with very long simulation time showed that a state transition would happen if Lx ≥ 8πh, from a state with four pairs of roll cells to a state with three pairs of roll cells with Lz = 6πh. Each state could survive for more than 1500h/Uw, and the flow statistics were different.

Keywords

plane Couette flow spanwise rotation state transition 

References

  1. 1.
    D. K. Lezius, and J. P. Johnston, J. Fluid Mech. 77, 153 (1976).CrossRefGoogle Scholar
  2. 2.
    P. H. Alfredsson, and H. Persson, J. Fluid Mech. 202, 543 (1989).CrossRefGoogle Scholar
  3. 3.
    N. Tillmark, and P. H. Alfredsson, in Advances in Turbulence VI, edited by S. Gavrilakis, L. Machiels, and P. A. Monkewitz (Kluwer, The Netherlands, 1996), pp. 391–394.Google Scholar
  4. 4.
    H. Alfredsson, and N. Tillmark, in IUTAM Symposium on Laminar-Turbulent Transition and Finite Amplitude Solutions, edited by T. Mullin, and R. Kerswell (Springer Netherlands, Dordrecht, 2005), pp. 173–193.Google Scholar
  5. 5.
    K. Hiwatashi, P. H. Alfredsson, N. Tillmark, and M. Nagata, Phys. Fluids 19, 048103 (2007).CrossRefGoogle Scholar
  6. 6.
    T. Tsukahara, N. Tillmark, and P. H. Alfredsson, J. Fluid Mech. 648, 5 (2010).CrossRefGoogle Scholar
  7. 7.
    A. Suryadi, N. Tillmark, and P. H. Alfredsson, Exp. Fluids 54, 1617 (2013).CrossRefGoogle Scholar
  8. 8.
    A. Suryadi, A. Segalini, and P. H. Alfredsson, Phys. Rev. E 89, 033003 (2014).CrossRefGoogle Scholar
  9. 9.
    T. Kawata, and P. H. Alfredsson, J. Fluid Mech. 791, 191 (2016).CrossRefGoogle Scholar
  10. 10.
    T. Kawata, and P. H. Alfredsson, Phys. Rev. Fluids 1, 034402 (2016).CrossRefGoogle Scholar
  11. 11.
    K. H. Bech, and H. I. Andersson, in Advances in Turbulence VI, edited by S. Gavrilakis, L. Machiels, and P. A. Monkewitz (Kluwer, The Netherlands, 1996), pp. 91–94.Google Scholar
  12. 12.
    K. H. Bech, and H. I. Andersson, J. Fluid Mech. 317, 195 (1996).CrossRefGoogle Scholar
  13. 13.
    J. Komminaho, A. Lundbladh, and A. V. Johansson, J. Fluid Mech. 320, 259 (1996).CrossRefGoogle Scholar
  14. 14.
    K. H. Bech, and H. I. Andersson, J. Fluid Mech. 347, 289 (1997).MathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Nagata, J. Fluid Mech. 358, 357 (1998).MathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Barri, and H. I. Andersson, in Advances in Turbulence XI, edited by J. M. L. M. Palma, and A. Silva Lopes (Springer-Verlag, Berlin Heidelberg, 2007), pp. 100–102.Google Scholar
  17. 17.
    M. Barri, and H. I. Andersson, Commun. Comput. Phys. 7, 683 (2009).Google Scholar
  18. 18.
    T. Tsukahara, J. Phys.-Conf. Ser. 318, 022024 (2011).CrossRefGoogle Scholar
  19. 19.
    M. Salewski, and B. Eckhardt, Phys. Fluids 27, 045109 (2015).CrossRefGoogle Scholar
  20. 20.
    J. Gai, Z. Xia, Q. Cai, and S. Chen, Phys. Rev. Fluids 1, 054401 (2016).CrossRefGoogle Scholar
  21. 21.
    Q. Cai, J. Gai, Z. Sun, and Z. Xia, Int. J. Nonlinear Sci. Numer. Simul. 17, 305 (2016).MathSciNetCrossRefGoogle Scholar
  22. 22.
    J. Gai, Z. Liu, J. Luo, Q. Cai, and Z. Xia, Acta. Phys. Sin. 65, 244703 (2016).Google Scholar
  23. 23.
    J. Kim, P. Moin, and R. Moser, J. Fluid Mech. 177, 133 (1987).CrossRefGoogle Scholar
  24. 24.
    M. Lee, and R. D. Moser, J. Fluid Mech. 774, 395 (2015), arXiv: 1410.7809.CrossRefGoogle Scholar
  25. 25.
    K. H. Bech, and H. I. Andersson, in Direct and Large-Eddy Simulation I: Selected papers from the First ERCOFTAC Workshop on Direct and Large-Eddy Simulation, edited by P. R Voke, L. Kleiser, and J.-P. Chollet (Springer, Dordrecht, 1994), pp. 13–24.Google Scholar
  26. 26.
    Z. Yang, and B. C. Wang, J. Fluid Mech. 838, 658 (2018).MathSciNetCrossRefGoogle Scholar
  27. 27.
    Y. J. Dai, W. X. Huang, and C. X. Xu, Phys. Fluids 28, 115104 (2016).CrossRefGoogle Scholar
  28. 28.
    Z. Xia, Y. Shi, and S. Chen, J. Fluid Mech. 788, 42 (2016).MathSciNetCrossRefGoogle Scholar
  29. 29.
    Y. Guo, and W. H. Finlay, J. Fluid Mech. 228, 661 (1991).Google Scholar
  30. 30.
    S. G. Huisman, R. C. A. van der Veen, C. Sun, and D. Lohse, Nat. Commun. 5, 3820 (2014), arXiv: 1604.04410.CrossRefGoogle Scholar
  31. 31.
    Z. Xia, Y. Shi, Q. Cai, M. Wan, and S. Chen, J. Fluid Mech. 837, 477 (2018).MathSciNetCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • YuHan Huang
    • 1
  • ZhenHua Xia
    • 2
    • 4
    Email author
  • MinPing Wan
    • 3
  • YiPeng Shi
    • 1
  • ShiYi Chen
    • 1
    • 2
    • 3
  1. 1.State Key Laboratory for Turbulence and Complex Systems, College of EngineeringPeking UniversityBeijingChina
  2. 2.Department of Engineering MechanicsZhejiang UniversityHangzhouChina
  3. 3.Department of Mechanics and Aerospace EngineeringSouthern University of Science and TechnologyShenzhenChina
  4. 4.Key Laboratory of Soft Machines and Smart Devices of Zhejiang ProvinceZhejiang UniversityHangzhouChina

Personalised recommendations