Advertisement

Magnetoelectric multiferroicity and quantum paraelectricity in hexaferrites

  • Shi-Peng Shen
  • Young SunEmail author
Invited Review

Abstract

Multiferroic materials with coexisting ferroelectric and magnetic orders have attracted tremendous research interests because of their intriguing fundamental physics as well as potential applications in the next-generation multifunctional devices. Hexaferrites with conical magnetic structures are among the most promising single-phase multiferroics because strong magnetoelectric effects can be achieved in them from low temperatures up to room temperature in low magnetic fields. In this review, after briefly introducing the background on multiferroics and classification of hexaferrites, we summarize recent progress in multiferroic hexaferrites, including the mechanisms of spin-induced ferroelectricity, the magnetoelectric phase diagram, giant direct and converse magnetoelectric effects. Furthermore, we present a new mechanism of magnetic-ion-induced displacive polarization in hexaferrites, which leads to quantum paraelectricity and quantum electric-dipole liquid in M-type hexaferrites.

Keywords

magnetoelectric effect hexaferrite quantum paraelectricity 

References

  1. 1.
    P. Debye, Z. Phys. 36, 300 (1926).ADSCrossRefGoogle Scholar
  2. 2.
    I. E. Dzyaloshinskii, Sov. Phys. Jetp-Ussr. 10, 628 (1960).Google Scholar
  3. 3.
    D. N. Astrov, Sov. Phys. Jetp-Ussr. 11, 708 (1960).Google Scholar
  4. 4.
    H. Schmid, Ferroelectrics 162, 317 (1994).CrossRefGoogle Scholar
  5. 5.
    M. Fiebig, J. Phys. D-Appl. Phys. 38, R123 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    H. Schmid, Ferroelectrics 161, 1 (1994).CrossRefGoogle Scholar
  9. 9.
    J. P. Rivera, Ferroelectrics 161, 165 (1994).CrossRefGoogle Scholar
  10. 10.
    Y. Tokura, J. Magn. Magn. Mater. 310, 1145 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    S. Dong, J. M. Liu, S. W. Cheong, and Z. Ren, Adv. Phys. 64, 519 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 426, 55 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).CrossRefGoogle Scholar
  14. 14.
    N. A. Spaldin, and M. Fiebig, Science 309, 391 (2005).CrossRefGoogle Scholar
  15. 15.
    W. F. Brown, R. M. Hornreich, and S. Shtrikman, Phys. Rev. 168, 574 (1968).ADSCrossRefGoogle Scholar
  16. 16.
    R. Seshadri, and N. A. Hill, Chem. Mater. 13, 2892 (2001).CrossRefGoogle Scholar
  17. 17.
    B. B. Van Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin, Nat. Mater. 3, 164 (2004).ADSCrossRefGoogle Scholar
  18. 18.
    D. Y. Cho, J. Y. Kim, B. G. Park, K. J. Rho, J. H. Park, H. J. Noh, B. J. Kim, S. J. Oh, H. M. Park, J. S. Ahn, H. Ishibashi, S. W. Cheong, J. H. Lee, P. Murugavel, T. W. Noh, A. Tanaka, and T. Jo, Phys. Rev. Lett. 98, 217601 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    H. J. Xiang, and M. H. Whangbo, Phys. Rev. Lett. 98, 246403 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    A. M. L. Lopes, J. P. Araújo, V. S. Amaral, J. G. Correia, Y. Tomioka, and Y. Tokura, Phys. Rev. Lett. 100, 155702 (2008), arXiv: 0802.3935.ADSCrossRefGoogle Scholar
  21. 21.
    N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, Nature 429, 392 (2004).ADSCrossRefGoogle Scholar
  22. 22.
    C. Jia, S. Onoda, N. Nagaosa, and J. H. Han, Phys. Rev. B 76, 144424 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005).ADSCrossRefGoogle Scholar
  24. 24.
    M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).ADSCrossRefGoogle Scholar
  25. 25.
    I. A. Sergienko, and E. Dagotto, Phys. Rev. B 73, 094434 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    T. Arima, J. Phys. Soc. Jpn. 76, 073702 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    T. Kimura, Annu. Rev. Condens. Matter Phys. 3, 93 (2012).CrossRefGoogle Scholar
  28. 28.
    Y. J. Choi, H. T. Yi, S. Lee, Q. Huang, V. Kiryukhin, and S. W. Cheong, Phys. Rev. Lett. 100, 047601 (2008).ADSCrossRefGoogle Scholar
  29. 29.
    Y. Tokura, S. Seki, and N. Nagaosa, Rep. Prog. Phys. 77, 076501 (2014).ADSCrossRefGoogle Scholar
  30. 30.
    T. Kimura, J. C. Lashley, and A. P. Ramirez, Phys. Rev. B 73, 220401 (R) (2006).Google Scholar
  31. 31.
    G. F. Dionne, Magnetic Oxides (Springer, New York, 2009).CrossRefGoogle Scholar
  32. 32.
    T. Kimura, G. Lawes, and A. P. Ramirez, Phys. Rev. Lett. 94, 137201 (2005).ADSCrossRefGoogle Scholar
  33. 33.
    P. Rovillain, R. de Sousa, Y. Gallais, A. Sacuto, M. A. Méasson, D. Colson, A. Forget, M. Bibes, A. Barthélémy, and M. Cazayous, Nat. Mater. 9, 975 (2010), arXiv: 1010.2678.ADSCrossRefGoogle Scholar
  34. 34.
    Y. S. Chai, S. Kwon, S. H. Chun, I. Kim, B. G. Jeon, K. H. Kim, and S. Lee, Nat. Commun. 5, 4208 (2014), arXiv: 1406.6493.ADSCrossRefGoogle Scholar
  35. 35.
    S. H. Chun, Y. S. Chai, B. G. Jeon, H. J. Kim, Y. S. Oh, I. Kim, H. Kim, B. J. Jeon, S. Y. Haam, J. Y. Park, S. H. Lee, J. H. Chung, J. H. Park, and K. H. Kim, Phys. Rev. Lett. 108, 177201 (2012), arXiv: 1111.4525.ADSCrossRefGoogle Scholar
  36. 36.
    P. B. Braun, Philips Res. Rep. 12, 491 (1957).Google Scholar
  37. 37.
    J. Smit, and H. P. J. Wijn, Ferrites (Phillips Technical Library, Eindhoven, 1959).Google Scholar
  38. 38.
    R. C. Pullar, Prog. Mater. Sci. 57, 1191 (2012).CrossRefGoogle Scholar
  39. 39.
    S. P. Shen, Y. S. Chai, J. Z. Cong, P. J. Sun, J. Lu, L. Q. Yan, S. G. Wang, and Y. Sun, Phys. Rev. B 90, 180404(R) (2014), arXiv: 1405.6806.Google Scholar
  40. 40.
    N. Momozawa, Y. Nagao, S. Utsumi, M. Abe, and Y. Yamaguchi, J. Phys. Soc. Jpn. 70, 2724 (2001).ADSCrossRefGoogle Scholar
  41. 41.
    S. Ishiwata, Y. Taguchi, H. Murakawa, Y. Onose, and Y. Tokura, Science 319, 1643 (2008).ADSCrossRefGoogle Scholar
  42. 42.
    Y. Tokunaga, Y. Kaneko, D. Okuyama, S. Ishiwata, T. Arima, S. Wakimoto, K. Kakurai, Y. Taguchi, and Y. Tokura, Phys. Rev. Lett. 105, 257201 (2010).ADSCrossRefGoogle Scholar
  43. 43.
    S. H. Chun, Y. S. Chai, Y. S. Oh, D. Jaiswal-Nagar, S. Y. Haam, I. Kim, B. Lee, D. H. Nam, K. T. Ko, J. H. Park, J. H. Chung, and K. H. Kim, Phys. Rev. Lett. 104, 037204 (2010), arXiv: 1001.1226.ADSCrossRefGoogle Scholar
  44. 44.
    F. Wang, T. Zou, L. Q. Yan, Y. Liu, and Y. Sun, Appl. Phys. Lett. 100, 122901 (2012), arXiv: 1111.6753.ADSCrossRefGoogle Scholar
  45. 45.
    K. Okumura, K. Haruki, T. Ishikura, S. Hirose, and T. Kimura, Appl. Phys. Lett. 103, 032906 (2013).ADSCrossRefGoogle Scholar
  46. 46.
    K. Zhai, Y. Wu, S. Shen, W. Tian, H. Cao, Y. Chai, B. C. Chakoumakos, D. Shang, L. Yan, F. Wang, and Y. Sun, Nat. Commun. 8, 519 (2017).ADSCrossRefGoogle Scholar
  47. 47.
    S. Hirose, K. Haruki, A. Ando, and T. Kimura, Appl. Phys. Lett. 104, 022907 (2014).ADSCrossRefGoogle Scholar
  48. 48.
    S. Shen, L. Yan, Y. Chai, J. Cong, and Y. Sun, Appl. Phys. Lett. 104, 032905 (2014).ADSCrossRefGoogle Scholar
  49. 49.
    H. B. Lee, S. H. Chun, K. W. Shin, B. G. Jeon, Y. S. Chai, K. H. Kim, J. Schefer, H. Chang, S. N. Yun, T. Y. Joung, and J. H. Chung, Phys. Rev. B 86, 094435 (2012).ADSCrossRefGoogle Scholar
  50. 50.
    T. Asaka, X. Z. Yu, Y. Hiraoka, K. Kimoto, T. Hirayama, T. Kimura, and Y. Matsui, Phys. Rev. B 83, 179902(R) (2011).Google Scholar
  51. 51.
    H. Sagayama, K. Taniguchi, N. Abe, T. H. Arima, Y. Nishikawa, S. I. Yano, Y. Kousaka, J. Akimitsu, M. Matsuura, and K. Hirota, Phys. Rev. B 80, 180419(R) (2009).Google Scholar
  52. 52.
    S. Ishiwata, D. Okuyama, K. Kakurai, M. Nishi, Y. Taguchi, and Y. Tokura, Phys. Rev. B 81, 174418 (2010).ADSCrossRefGoogle Scholar
  53. 53.
    S. P. Shen, X. Z. Liu, Y. S. Chai, A. Studer, K. Rule, K. Zhai, L. Q. Yan, D. S. Shang, F. Klose, Y. T. Liu, D. F. Chen, and Y. Sun, Phys. Rev. B 95, 094405 (2017).ADSCrossRefGoogle Scholar
  54. 54.
    K. A. Müller, and H. Burkard, Phys. Rev. B 19, 3593 (1979).ADSCrossRefGoogle Scholar
  55. 55.
    V. V. Lemanov, A. V. Sotnikov, E. P. Smirnova, M. Weihnacht, and R. Kunze, Solid State Commun. 110, 611 (1999).ADSCrossRefGoogle Scholar
  56. 56.
    A. R. Akbarzadeh, L. Bellaiche, K. Leung, J. Íñiguez, and D. Vanderbilt, Phys. Rev. B 70, 054103 (2004).ADSCrossRefGoogle Scholar
  57. 57.
    J. H. Barrett, Phys. Rev. 86, 118 (1952).ADSCrossRefGoogle Scholar
  58. 58.
    X. Obradors, A. Collomb, M. Pernet, D. Samaras, and J. C. Joubert, J. Solid State Chem. 56, 171 (1985).ADSCrossRefGoogle Scholar
  59. 59.
    P. S. Wang, and H. J. Xiang, Phys. Rev. X 4, 011035 (2014), arXiv: 1401.2747.Google Scholar
  60. 60.
    L. Balents, Nature 464, 199 (2010).ADSCrossRefGoogle Scholar
  61. 61.
    X. G. Wen, Phys. Rev. B 65, 165113 (2002).ADSCrossRefGoogle Scholar
  62. 62.
    Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G. Saito, Phys. Rev. Lett. 91, 107001 (2003).ADSCrossRefGoogle Scholar
  63. 63.
    S. H. Lee, H. Kikuchi, Y. Qiu, B. Lake, Q. Huang, K. Habicht, and K. Kiefer, Nat. Mater. 6, 853 (2007), arXiv: 0705.2279.ADSCrossRefGoogle Scholar
  64. 64.
    Y. Okamoto, M. Nohara, H. Aruga-Katori, and H. Takagi, Phys. Rev. Lett. 99, 137207 (2007), arXiv: 0705.2821.ADSCrossRefGoogle Scholar
  65. 65.
    T. H. Han, J. S. Helton, S. Chu, D. G. Nocera, J. A. Rodriguez-Rivera, C. Broholm, and Y. S. Lee, Nature 492, 406 (2012), arXiv: 1307.5047.ADSCrossRefGoogle Scholar
  66. 66.
    L. Clark, J. C. Orain, F. Bert, M. A. De Vries, F. H. Aidoudi, R. E. Morris, P. Lightfoot, J. S. Lord, M. T. F. Telling, P. Bonville, J. P. Attfield, P. Mendels, and A. Harrison, Phys. Rev. Lett. 110, 207208 (2013), arXiv: 1306.4269.ADSCrossRefGoogle Scholar
  67. 67.
    S. P. Shen, J. C. Wu, J. D. Song, X. F. Sun, Y. F. Yang, Y. S. Chai, D. S. Shang, S. G. Wang, J. F. Scott, and Y. Sun, Nat. Commun. 7, 10569 (2016), arXiv: 1507.01405.ADSCrossRefGoogle Scholar
  68. 68.
    M. Yamashita, N. Nakata, Y. Kasahara, T. Sasaki, N. Yoneyama, N. Kobayashi, S. Fujimoto, T. Shibauchi, and Y. Matsuda, Nat. Phys. 5, 44 (2009).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations