Advertisement

Superconductivity in potassium and ammonia co-intercalated FeSe1-xTex

  • BinBin Xiao
  • NaiZhou Wang
  • Chao Shang
  • FanBao Meng
  • JianWen Ding
  • Bin LeiEmail author
  • XiGang Luo
Article
  • 95 Downloads

Abstract

The origin of the ~40 and ~30 K superconducting phases in the metal-intercalated FeSe superconductors is still unclear. We report the synthesis of K0:3(NH3)y(FeSe1−xTex)2 and K0:6(NH3)y(FeSe1−xTex)2 with x=0-0.6 by using the liquid ammonia method at room temperature. The superconducting transition temperature Tc of the former remains about 43 K for all the nominal Te content less than 0.3, while that of the latter is about 30 K and obviously decreases with Te doping. Superconductivity disappears for x ≥0.4 in both systems. Except for the different chemical pressure induced by substitution of Te for Se in both systems, we also observed distinct external pressure effect on superconductivity for both systems, with much more efficiency of suppressing Tc by external pressure in the former system. These dramatic differences of both chemical and external pressure effects on Tc between the ~30 and ~40 K superconducting phases revealed that the existence of the two superconducting phases can be ascribed to the moderate and negligible coupling between FeSe layers, respectively.

Keywords

pnictides and chalcogenides properties of superconductors effects of pressure methods of materials synthesis and materials processing 

References

  1. 1.
    Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).CrossRefGoogle Scholar
  2. 2.
    X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang, Nature 453, 761 (2008), arXiv: 0803.3603.ADSCrossRefGoogle Scholar
  3. 3.
    F. C. Hsu, J. Y. Luo, K.W. Yeh, T. K. Chen, T.W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, Proc. Natl. Acad. Sci. 105, 14262 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    S. Medvedev, T. M. McQueen, I. A. Troyan, T. Palasyuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, and C. Felser, Nat. Mater. 8, 630 (2009), arXiv: 0903.2143.ADSCrossRefGoogle Scholar
  5. 5.
    J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, and X. Chen, Phys. Rev. B 82, 180520(R) (2010), arXiv: 1012.2924.ADSCrossRefGoogle Scholar
  6. 6.
    A. F. Wang, J. J. Ying, Y. J. Yan, R. H. Liu, X. G. Luo, Z. Y. Li, X. F. Wang, M. Zhang, G. J. Ye, P. Cheng, Z. J. Xiang, and X. H. Chen, Phys. Rev. B 83, 060512(R) (2011), arXiv: 1012.5525.ADSCrossRefGoogle Scholar
  7. 7.
    A. Krzton-Maziopa, Z. Shermadini, E. Pomjakushina, V. Pomjakushin, M. Bendele, A. Amato, R. Khasanov, H. Luetkens, and K. Conder, J. Phys.-Condens. Matter 23, 052203 (2011), arXiv: 1012.3637.ADSCrossRefGoogle Scholar
  8. 8.
    M. H. Fang, H. D. Wang, C. H. Dong, Z. J. Li, C. M. Feng, J. Chen, and H. Q. Yuan, Europhys. Lett. 94, 27009 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    H. D. Wang, C. H. Dong, Z. J. Li, Q. H. Mao, S. S. Zhu, C. M. Feng, H. Q. Yuan, and M. H. Fang, Europhys. Lett. 93, 47004 (2011), arXiv: 1101.0462.ADSCrossRefGoogle Scholar
  10. 10.
    W. Li, H. Ding, P. Deng, K. Chang, C. Song, K. He, L. Wang, X. Ma, J. P. Hu, X. Chen, and Q. K. Xue, Nat. Phys. 8, 126 (2012), arXiv: 1108.0069.CrossRefGoogle Scholar
  11. 11.
    W. Bao, Q. Z. Huang, G. F. Chen, D. M. Wang, J. B. He, and Y. M. Qiu, Chin. Phys. Lett. 28, 086104 (2011), arXiv: 1102.0830.ADSCrossRefGoogle Scholar
  12. 12.
    W. Bao, G. N. Li, Q. Z. Huang, G. F. Chen, J. B. He, D. M. Wang, M. A. Green, Y. M. Qiu, J. L. Luo, and M. M. Wu, Chin. Phys. Lett. 30, 027402 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    L. Sun, X. J. Chen, J. Guo, P. Gao, Q. Z. Huang, H. Wang, M. Fang, X. Chen, G. Chen, Q. Wu, C. Zhang, D. Gu, X. Dong, L. Wang, K. Yang, A. Li, X. Dai, H. Mao, and Z. Zhao, Nature 483, 67 (2012), arXiv: 1110.2600.ADSCrossRefGoogle Scholar
  14. 14.
    T. Ying, X. Chen, G. Wang, S. Jin, X. Lai, T. Zhou, H. Zhang, S. Shen, and W. Wang, J. Am. Chem. Soc. 135, 2951 (2013).CrossRefGoogle Scholar
  15. 15.
    T. P. Ying, X. L; T. P. Ying, X. L. Chen, G. Wang, S. F. Jin, T. T. Zhou, X. F. Lai, H. Zhang, and W. Y. Wang, Sci. Rep. 2, 426 (2012), arXiv: 1202.4340.CrossRefGoogle Scholar
  16. 16.
    E. W. Scheidt, V. R. Hathwar, D. Schmitz, A. Dunbar, W. Scherer, F. Mayr, V. Tsurkan, J. Deisenhofer, and A. Loidl, Eur. Phys. J. B 85, 279 (2012), arXiv: 1205.5731.ADSCrossRefGoogle Scholar
  17. 17.
    A. Krzton-Maziopa, E. V. Pomjakushina, V. Y. Pomjakushin, F. von Rohr, A. Schilling, and K. Conder, J. Phys.-Condens. Matter 24, 382202 (2012), arXiv: 1206.7022.CrossRefGoogle Scholar
  18. 18.
    M. Burrard-Lucas, D. G. Free, S. J. Sedlmaier, J. D. Wright, S. J. Cassidy, Y. Hara, A. J. Corkett, T. Lancaster, P. J. Baker, S. J. Blundell, and S. J. Clarke, Nat. Mater. 12, 15 (2013), arXiv: 1203.5046.ADSCrossRefGoogle Scholar
  19. 19.
    L. Zheng, M. Izumi, Y. Sakai, R. Eguchi, H. Goto, Y. Takabayashi, T. Kambe, T. Onji, S. Araki, T. C. Kobayashi, J. Kim, A. Fujiwara, and Y. Kubozono, Phys. Rev. B 88, 094521 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    T. Hatakeda, T. Noji, T. Kawamata, M. Kato, and Y. Koike, J. Phys. Soc. Jpn. 82, 123705 (2013), arXiv: 1311.0141.ADSCrossRefGoogle Scholar
  21. 21.
    A. Zhang, T. Xia, K. Liu, W. Tong, Z. Yang, and Q. Zhang, Sci. Rep. 3, 1216 (2013), arXiv: 1203.1533.CrossRefGoogle Scholar
  22. 22.
    K. W. Yeh, T. W. Huang, Y. Huang, T. K. Chen, F. C. Hsu, P. M. Wu, Y. C. Lee, Y. Y. Chu, C. L. Chen, J. Y. Luo, D. C. Yan, and M. K. Wu, Europhys. Lett. 84, 37002 (2008), arXiv: 0808.0474.ADSCrossRefGoogle Scholar
  23. 23.
    Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Y. Takano, J. Phys. Soc. Jpn. 78, 074712 (2009), arXiv: 0811.1123.ADSCrossRefGoogle Scholar
  24. 24.
    Z. Wang, Y. Cai, Z. W. Wang, Z. A. Sun, H. X. Yang, H. F. Tian, C. Ma, B. Zhang, and J. Q. Li, EPL 102, 37010 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    M. H. Fang, H. M. Pham, B. Qian, T. J. Liu, E. K. Vehstedt, Y. Liu, L. Spinu, and Z. Q. Mao, Phys. Rev. B 78, 224503 (2008), arXiv: 0807.4775.ADSCrossRefGoogle Scholar
  26. 26.
    T. Ozaki, H. Takeya, K. Deguchi, S. Demura, H. Hara, T. Watanabe, S. James Denholme, H. Okazaki, M. Fujioka, Y. Yokota, T. Yamaguchi, and Y. Takano, Supercond. Sci. Technol. 26, 055002 (2013), arXiv: 1209.2002.ADSCrossRefGoogle Scholar
  27. 27.
    J. J. Ying, X. F. Wang, X. G. Luo, Z. Y. Li, Y. J. Yan, M. Zhang, A. F. Wang, P. Cheng, G. J. Ye, Z. J. Xiang, R. H. Liu, and X. H. Chen, New J. Phys. 13, 033008 (2011), arXiv: 1101.1234.ADSCrossRefGoogle Scholar
  28. 28.
    X. F. Lu, N. Z. Wang, G. H. Zhang, X. G. Luo, Z. M. Ma, B. Lei, F. Q. Huang, and X. H. Chen, Phys. Rev. B 89, 020507 (2014), arXiv: 1309.3833.ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • BinBin Xiao
    • 1
    • 2
  • NaiZhou Wang
    • 3
  • Chao Shang
    • 3
  • FanBao Meng
    • 3
  • JianWen Ding
    • 1
  • Bin Lei
    • 3
    Email author
  • XiGang Luo
    • 3
  1. 1.Department of Physics and Institute for Nanophysics and Rare-earth LuminescenceXiangtan UniversityXiangtanChina
  2. 2.College of Physics and Electronics EngineeringHengyang Normal UniversityHengyangChina
  3. 3.Hefei National Laboratory for Physical Science at Microscale and Department of PhysicsUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations