Advertisement

Implications on cosmic ray injection and propagation parameters from Voyager/ACE/AMS-02 nucleus data

  • Qiang YuanEmail author
Article

Abstract

We study the propagation and injection models of cosmic rays using the latest measurements of the boron-to-carbon ratio and fluxes of protons, helium, carbon, and oxygen nuclei by the Alpha Magnetic Spectrometer and the Advanced Composition Ex- plorer at top of the Earth, and the Voyager spacecraft outside the heliosphere. The Advanced Composition Explorer (ACE) data during the same time interval of the AMS-02 data are extracted to minimize the complexity of the solar modulation effect. We find that the cosmic ray nucleus data favor a modified version of the diffusion-reacceleration scenario of the propagation. The diffusion coefficient is, however, required to increase moderately with decreasing rigidity at low energies, which has interesting implications on the particle and plasma interaction in the Milky Way. We further find that the low rigidity (< a few GV) injection spectra are different for different compositions. The injection spectra are softer for lighter nuclei. These results are expected to be helpful in understanding the acceleration process of cosmic rays.

Keywords

cosmic rays propagation origin and acceleration data analysis 

References

  1. 1.
    S. P. Swordy, D. Mueller, P. Meyer, J. LHeureux, and J. M. Grunsfeld, Astrophys. J. 349, 625 (1990).CrossRefGoogle Scholar
  2. 2.
    D. Mueller, S. P. Swordy, P. Meyer, J. LHeureux, and J. M. Grunsfeld, Astrophys. J. 374, 356 (1991).CrossRefGoogle Scholar
  3. 3.
    D. Maurin, F. Donato, R. Taillet, and P. Salati, Astrophys. J. 555, 585 (2001).CrossRefGoogle Scholar
  4. 4.
    R. Trotta, G. Jóhannesson, I. V. Moskalenko, T. A. Porter, R. R. de Austri, and A. W. Strong, Astrophys. J. 729, 106 (2011), arXiv: 1011.0037.CrossRefGoogle Scholar
  5. 5.
    H. B. Jin, Y. L. Wu, and Y. F. Zhou, J. Cosmol. Astropart. Phys. 2015, 049 (2015), arXiv: 1410.0171.CrossRefGoogle Scholar
  6. 6.
    G. Jóhannesson, R. R. Austri, A. C. Vincent, I. V. Moskalenko, E. Orlando, T. A. Porter, A. W. Strong, R. Trotta, F. Feroz, P. Graff, and M. P. Hobson, Astrophys. J. 824, 16 (2016), arXiv: 1602.02243.CrossRefGoogle Scholar
  7. 7.
    J. Feng, N. Tomassetti, and A. Oliva, Phys. Rev. D 94, 123007 (2016), arXiv: 1610.06182.CrossRefGoogle Scholar
  8. 8.
    M. Korsmeier, and A. Cuoco, Phys. Rev. D 94, 123019 (2016), arXiv: 1607.06093.CrossRefGoogle Scholar
  9. 9.
    M. Aguilar, et al. (AMS collaboration), Phys. Rev. Lett. 117, 231102 (2016).CrossRefGoogle Scholar
  10. 10.
    Q. Yuan, S. J. Lin, K. Fang, and X. J. Bi, Phys. Rev. D 95, 083007 (2017), arXiv: 1701.06149.CrossRefGoogle Scholar
  11. 11.
    J. S. Niu, and T. Li, Phys. Rev. D 97, 023015 (2018), arXiv: 1705.11089.CrossRefGoogle Scholar
  12. 12.
    A. Reinert, and M. W. Winkler, J. Cosmol. Astropart. Phys. 2018, 055 (2018), arXiv: 1712.00002.CrossRefGoogle Scholar
  13. 13.
    M. Aguilar, et al. (AMS collaboration), Phys. Rev. Lett. 119, 251101 (2017).CrossRefGoogle Scholar
  14. 14.
    M. Aguilar, et al. (AMS collaboration), Phys. Rev. Lett. 120, 021101 (2018).CrossRefGoogle Scholar
  15. 15.
    P. Blasi, E. Amato, and P. D. Serpico, Phys. Rev. Lett. 109, 061101 (2012), arXiv: 1207.3706.CrossRefGoogle Scholar
  16. 16.
    N. Tomassetti, Astrophys. J. 752, L13 (2012), arXiv: 1204.4492.CrossRefGoogle Scholar
  17. 17.
    Y. Q. Guo, Z. Tian, and C. Jin, Astrophys. J. 819, 54 (2016), arXiv: 1509.08227.CrossRefGoogle Scholar
  18. 18.
    Y. Génolini, P. D. Serpico, M. Boudaud, S. Caroff, V. Poulin, L. Derome, J. Lavalle, D. Maurin, V. Poireau, S. Rosier, P. Salati, and M. Vecchi, Phys. Rev. Lett. 119, 241101 (2017), arXiv: 1706.09812.CrossRefGoogle Scholar
  19. 19.
    Y. Q. Guo, and Q. Yuan, Phys. Rev. D 97, 063008 (2018), arXiv: 1801.05904.CrossRefGoogle Scholar
  20. 20.
    W. Liu, Y.-H. Yao, and Y.-Q. Guo, arXiv: 1802.03602.Google Scholar
  21. 21.
    E. C. Stone, A. C. Cummings, F. B. McDonald, B. C. Heikkila, N. Lal, and W. R. Webber, Science 341, 150 (2013).CrossRefGoogle Scholar
  22. 22.
    A. C. Cummings, E. C. Stone, B. C. Heikkila, N. Lal, W. R. Webber, G. Jóhannesson, I. V. Moskalenko, E. Orlando, and T. A. Porter, Astrophys. J. 831, 18 (2016).CrossRefGoogle Scholar
  23. 23.
    J. Liu, Q. Yuan, X. Bi, H. Li, and X. Zhang, Phys. Rev. D 81, 023516 (2010), arXiv: 0906.3858.CrossRefGoogle Scholar
  24. 24.
    J. Liu, Q. Yuan, X. J. Bi, H. Li, and X. Zhang, Phys. Rev. D 85, 043507 (2012), arXiv: 1106.3882.CrossRefGoogle Scholar
  25. 25.
    A. W. Strong, and I. V. Moskalenko, Astrophys. J. 509, 212 (1998).CrossRefGoogle Scholar
  26. 26.
    I. V. Moskalenko, and A. W. Strong, Astrophys. J. 493, 694 (1998).CrossRefGoogle Scholar
  27. 27.
    A. Lewis, and S. Bridle, Phys. Rev. D 66, 103511 (2002).CrossRefGoogle Scholar
  28. 28.
    A. W. Strong, I. V. Moskalenko, and V. S. Ptuskin, Annu. Rev. Nucl. Part. Sci. 57, 285 (2007).CrossRefGoogle Scholar
  29. 29.
    J. R. Jokipii, Astrophys. J. 208, 900 (1976).CrossRefGoogle Scholar
  30. 30.
    E. S. Seo, and V. S. Ptuskin, Astrophys. J. 431, 705 (1994).CrossRefGoogle Scholar
  31. 31.
    L. J. Gleeson, and W. I. Axford, Astrophys. J. 154, 1011 (1968).CrossRefGoogle Scholar
  32. 32.
    G. Di Bernardo, C. Evoli, D. Gaggero, D. Grasso, and L. Maccione, Astropart. Phys. 34, 274 (2010), arXiv: 0909.4548.CrossRefGoogle Scholar
  33. 33.
    V. S. Ptuskin, I. V. Moskalenko, F. C. Jones, A. W. Strong, and V. N. Zirakashvili, Astrophys. J. 642, 902 (2006).CrossRefGoogle Scholar
  34. 34.
    J. S. George, K. A. Lave, M. E. Wiedenbeck, W. R. Binns, A. C. Cummings, A. J. Davis, G. A. de Nolfo, P. L. Hink, M. H. Israel, R. A. Leske, R. A. Mewaldt, L. M. Scott, E. C. Stone, T. T. von Rosenvinge, and N. E. Yanasak, Astrophys. J. 698, 1666 (2009).CrossRefGoogle Scholar
  35. 35.
    J. A. Simpson, and M. Garcia-Munoz, Space Sci. Rev. 46, 205 (1988).CrossRefGoogle Scholar
  36. 36.
    J. J. Connell, Astrophys. J. 501, L59 (1998).CrossRefGoogle Scholar
  37. 37.
    A. Lukasiak, Inter. Cosmic Ray Conf., 3, 41 (1999).Google Scholar
  38. 38.
    N. E. Yanasak, M. E. Wiedenbeck, R. A. Mewaldt, A. J. Davis, A. C. Cummings, J. S. George, R. A. Leske, E. C. Stone, E. R. Christian, T. T. von Rosenvinge, W. R. Binns, P. L. Hink, and M. H. Israel, Astrophys. J. 563, 768 (2001).CrossRefGoogle Scholar
  39. 39.
    T. Hams, L. M. Barbier, M. Bremerich, E. R. Christian, G. A. de Nolfo, S. Geier, H. Gobel, S. K. Gupta, M. Hof, W. Menn, R. A. Mewaldt, J. W. Mitchell, S. M. Schindler, M. Simon, and R. E. Streitmatter, Astrophys. J. 611, 892 (2004).CrossRefGoogle Scholar
  40. 40.
    S. Cao, M. Biesiada, J. Jackson, X. Zheng, Y. Zhao, and Z. H. Zhu, J. Cosmol. Astropart. Phys. 2017, 012 (2017), arXiv: 1609.08748.CrossRefGoogle Scholar
  41. 41.
    Y. S. Yoon, et al. (CREAM collaboration), Astrophys. J. 839, 5 (2017), arXiv: 1704.02512.CrossRefGoogle Scholar
  42. 42.
    M. J. Boschini, S. D. Torre, M. Gervasi, D. Grandi, G. Jóhannesson, G. L. Vacca, N. Masi, I. V. Moskalenko, S. Pensotti, T. A. Porter, L. Quadrani, P. G. Rancoita, D. Rozza, and M. Tacconi, Astrophys. J. 858, 61 (2018), arXiv: 1804.06956.CrossRefGoogle Scholar
  43. 43.
    Y. Zhang, S. Liu, and Q. Yuan, Astrophys. J. 844, L3 (2017), arXiv: 1707.00262.CrossRefGoogle Scholar
  44. 44.
    A. Kolmogorov, Akadem. SSSR Doklady 30, 301 (1941).Google Scholar
  45. 45.
    R. H. Kraichnan, Phys. Fluids 8, 1385 (1965).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain ObservatoryChinese Academy of SciencesNanjingChina
  2. 2.School of Astronomy and Space ScienceUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Center for High Energy PhysicsPeking UniversityBeijingChina

Personalised recommendations