Advertisement

Duplicating classical bits with universal quantum cloning machine

  • MingHao Wang
  • QingYu CaiEmail author
Article
  • 16 Downloads

Abstract

It seems there is a large gap between quantum cloning and classical duplication since quantum mechanics forbid perfect copies of unknown quantum states. In this paper, we prove that a classical duplication process can be realized by using a universal quantum cloning machine (QCM). A classical bit is encoded not on a single quantum state, but on a large number of single identical quantum states. Errors are inevitable when copying these identical quantum states due to the quantum no-cloning theorem. When a small part of errors are ignored, i.e., errors as the minority are automatically corrected by the majority, the fidelity of duplicated copies of classical information will approach unity infinitely. In this way, the classical bits can be duplicated precisely with a universal QCM, which presents a natural transition from quantum cloning to classical duplication. The implement of classical duplication by using QCM shines new lights on the universality of quantum mechanics.

Keywords

quantum no-cloning classical duplication error-correction correspondence principle 

References

  1. 1.
    W. K. Wootters, and W. H. Zurek, Nature 299, 802 (1982).ADSCrossRefGoogle Scholar
  2. 2.
    D. Dieks, Phys. Lett. A 92, 271 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, and B. Schumacher, Phys. Rev. Lett. 76, 2818 (1996).ADSCrossRefGoogle Scholar
  4. 4.
    V. Buzek, and M. Hillery, Phys. Rev. A 54, 1844 (1996).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    L. M. Duan, and G. C. Guo, Phys. Lett. A 243, 261 (1998).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    L. M. Duan, and G. C. Guo, Phys. Rev. Lett. 80, 4999 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    V. Scarani, S. Iblisdir, N. Gisin, and A. Acin, Rev. Mod. Phys. 77, 1225 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    H. Fan, Y. N. Wang, L. Jing, J. D. Yue, H. D. Shi, Y. L. Zhang, and L. Z. Mu, Phys. Rep. 544, 241 (2014), arXiv: 1301.2956.ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    N. Gisin, and S. Massar, Phys. Rev. Lett. 79, 2153 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    D. Bruß, D. P. DiVincenzo, A. Ekert, C. A. Fuchs, C. Macchiavello, and J. A. Smolin, Phys. Rev. A 57, 2368 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    R. F. Werner, Phys. Rev. A 58, 1827 (1998).ADSCrossRefGoogle Scholar
  12. 12.
    A. Lamas-Linares, C. Simon, J. C. Howell, and D. Bouwmeester, Science 296, 712 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    Y. N. Wang, H. D. Shi, Z. X. Xiong, L. Jing, X. J. Ren, L. Z. Mu, and H. Fan, Phys. Rev. A 84, 034302 (2011), arXiv: 1104.4014.ADSCrossRefGoogle Scholar
  14. 14.
    D. Bruß, M. Cinchetti, G. Mauro D'Ariano, and C. Macchiavello, Phys. Rev. A 62, 012302 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    G. M. D'Ariano, and P. Lo Presti, Phys. Rev. A 64, 042308 (2001).ADSCrossRefGoogle Scholar
  16. 16.
    H. Fan, K. Matsumoto, X. B. Wang, and H. Imai, J. Phys. A-Math. Gen. 35, 7415 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    V. Karimipour, and A. T. Rezakhani, Phys. Rev. A 66, 052111 (2002).ADSCrossRefGoogle Scholar
  18. 18.
    H. Fan, H. Imai, K. Matsumoto, and X. B. Wang, Phys. Rev. A 67, 022317 (2003).ADSCrossRefGoogle Scholar
  19. 19.
    N. J. Cerf, and S. Iblisdir, Phys. Rev. A 62, 040301 (2000).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Iblisdir, A. Acin, and N. Gisin, Physics 6, 410 (2005).Google Scholar
  21. 21.
    H. Chen, D. Lu, B. Chong, G. Qin, X. Zhou, X. Peng, and J. Du, Phys. Rev. Lett. 106, 180404 (2011), arXiv: 1104.3643.ADSCrossRefGoogle Scholar
  22. 22.
    W. Zhang, P. Rui, Z. Zhang, and Q. Yang, New J. Phys. 16, 083019 (2014).ADSCrossRefGoogle Scholar
  23. 23.
    N. J. Cerf, A. Ipe, and X. Rottenberg, Phys. Rev. Lett. 85,1754 (2000).Google Scholar
  24. 24.
    S. L. Braunstein, N. J. Cerf, S. Iblisdir, P. van Loock, and S. Massar, Phys. Rev. Lett. 86, 4938 (2001).ADSCrossRefGoogle Scholar
  25. 25.
    J. Fiurasek, Phys. Rev. Lett. 86, 4942 (2001).ADSCrossRefGoogle Scholar
  26. 26.
    C. H. Bennett, and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India (IEEE, New York, 1984).Google Scholar
  27. 27.
    C. E. Shannon, SIGMOBILE Mob. Comput. Commun. Rev. 5, 3 (2001).CrossRefGoogle Scholar
  28. 28.
    S. M. Barnett, and S. Croke, Adv. Opt. Photon. 1, 238 (2009), arXiv: 0810.1970.CrossRefGoogle Scholar
  29. 29.
    A. Chefles, Contemporary Phys. 41, 401 (2000).ADSCrossRefGoogle Scholar
  30. 30.
    R. Derka, V. Buzzek, and A. K. Ekert, Phys. Rev. Lett. 80, 1571 (1998).ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Y. Shen, L. Hao, and G. L. Long, Chin. Phys. Lett. 28, 010306 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhanChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations