Advertisement

Study of the shear-rate dependence of granular friction based on community detection

  • YongWen Zhang
  • GaoKe Hu
  • XiaoSong Chen
  • Wei ChenEmail author
  • WenQi LiuEmail author
Article
  • 63 Downloads

Abstract

In this study, computer simulations are performed on three-dimensional granular systems under shear conditions. The system comprises granular particles that are confined between two rigid plates. The top plate is subjected to a normal force and driven by a shearing velocity. A positive shear-rate dependence of granular friction, known as velocity-strengthening, exists between the granular and shearing plate. To understand the origin of the dependence of frictional sliding, we treat the granular system as a complex network, where granular particles are nodes and normal contact forces are weighted edges used to obtain insight into the interiors of granular matter. Community structures within granular property networks are detected under different shearing velocities in the steady state. Community parameters, such as the size of the largest cluster and average size of clusters, show significant monotonous trends in shearing velocity associated with the shear-rate dependence of granular friction. Then, we apply an instantaneous change in shearing velocity. A dramatic increase in friction is observed with a change in shearing velocity in the non-steady state. The community structures in the non-steady state are different from those in the steady state. Results indicate that the largest cluster is a key factor affecting the friction between the granular and shearing plate.

Keywords

granular shear-rate friction community detection 

References

  1. 1.
    O. Reynolds, Philos. Mag. 20, 469 (1885).CrossRefGoogle Scholar
  2. 2.
    Z. Q. Yang, M. X. Liu, and X. S. Chen, Sci. China–Phys. Mech. Astron. 60, 020521 (2017).ADSCrossRefGoogle Scholar
  3. 3.
    X. Zhang, G. K. Hu, Y. W. Zhang, X. T. Li, and X. S. Chen, Sci. China–Phys. Mech. Astron. 61, 120511 (2018).ADSCrossRefGoogle Scholar
  4. 4.
    A. Lucas, A. Mangeney, and J. P. Ampuero, Nat. Commun. 5, 3417 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    P. A. Johnson, and X. Jia, Nature 437, 871 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    P. A. Johnson, H. Savage, M. Knuth, J. Gomberg, and C. Marone, Nature 451, 57 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    J. Chen, I. Ratera, J. Y. Park, and M. Salmeron, Phys. Rev. Lett. 96, 236102 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    S. Ohnishi, and A. M. Stewart, Langmuir 18, 6140 (2002).CrossRefGoogle Scholar
  9. 9.
    R. R. Hartley, and R. P. Behringer, Nature 421, 928 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    O. Kuwano, R. Ando, and T. Hatano, Geophys. Res. Lett. 40, 1295 (2013), arXiv: 1106.0101.ADSCrossRefGoogle Scholar
  11. 11.
    O. Kuwano, and T. Hatano, Geophys. Res. Lett. 38, L17305 (2011).Google Scholar
  12. 12.
    T. Hatano, Phys. Rev. E 75, 060301 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    J. H. Dieterich, J. Geophys. Res. 84, 2161 (1979).ADSCrossRefGoogle Scholar
  14. 14.
    C. Marone, Annu. Rev. Earth Planet. Sci. 26, 643 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    T. Hatano, and O. Kuwano, Pure Appl. Geophys. 170, 3 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    E. Aharonov, and D. Sparks, Phys. Rev. E 65, 051302 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    Z. Shojaaee, J. N. Roux, F. Chevoir, and D. E. Wolf, Phys. Rev. E 86, 011301 (2012), arXiv: 1210.3329.ADSCrossRefGoogle Scholar
  18. 18.
    N. Xu, C. S. O'Hern, and L. Kondic, Phys. Rev. E 72, 041504 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    W. Dong, and X. S. Chen, Sci. China–Phys. Mech. Astron. 61, 070501 (2018).ADSCrossRefGoogle Scholar
  20. 20.
    J. F. Peters, M. Muthuswamy, J. Wibowo, and A. Tordesillas, Phys. Rev. E 72, 041307 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    E. T. Owens, and K. E. Daniels, Europhys. Lett. 94, 54005 (2011), arXiv: 1007.3908.ADSCrossRefGoogle Scholar
  22. 22.
    W. G. Ellenbroek, E. Somfai, M. van Hecke, and W. van Saarloos, Phys. Rev. Lett. 97, 258001 (2006).ADSCrossRefGoogle Scholar
  23. 23.
    R. C. Hidalgo, C. U. Grosse, F. Kun, H. W. Reinhardt, and H. J. Herrmann, Phys. Rev. Lett. 89, 205501 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    D. S. Bassett, E. T. Owens, M. A. Porter, M. L. Manning, and K. E. Daniels, Soft Matter 11, 2731 (2015), arXiv: 1408.3841.ADSCrossRefGoogle Scholar
  25. 25.
    R. Navakas, A. Dziugys, and B. Peters, Physica. A 407, 312 (2014).ADSCrossRefGoogle Scholar
  26. 26.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang, Phys. Rep. 424, 175 (2006).ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    R. Cohen, and S. Havlin, Complex Networks: Structure, Robustness and Function (Cambridge University Press, Cambridge, 2010), p. 1.CrossRefzbMATHGoogle Scholar
  28. 28.
    J. F. Fan, J. Meng, X. S. Chen, Y. Ashkenazy, and S. Havlin, Sci. China–Phys. Mech. Astron. 60, 010531 (2017).ADSCrossRefGoogle Scholar
  29. 29.
    Y. Zhang, D. Chen, J. Fan, S. Havlin, and X. Chen, Europhys. Lett. 122, 58003 (2018), arXiv: 1803.05114.ADSCrossRefGoogle Scholar
  30. 30.
    M. E. J. Newman, Phys. Rev. E 74, 036104 (2006).ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    M. E. J. Newman, Proc. Natl. Acad. Sci. 103, 8577 (2006).ADSCrossRefGoogle Scholar
  32. 32.
    M. E. J. Newman, Nat. Phys. 8, 25 (2012).CrossRefGoogle Scholar
  33. 33.
    S. Fortunato, Phys. Rep. 486, 75 (2010), arXiv: 0906.0612.ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheatham Iii, S. DeBolt, D. Ferguson, G. Seibel, and P. Kollman, Comput. Phys. Commun. 91, 1 (1995).ADSCrossRefGoogle Scholar
  35. 35.
    P. A. Cundall, and O. D. L. Strack, Geotechnique 29, 47 (1979).CrossRefGoogle Scholar
  36. 36.
    K. Johnson, and K. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1987), p. 1.zbMATHGoogle Scholar
  37. 37.
    D. S. Bassett, M. A. Porter, N. F. Wymbs, S. T. Grafton, J. M. Carlson, and P. J. Mucha, Chaos 23, 013142 (2013), arXiv: 1206.4358.ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    D. M. Huang, C. Sendner, D. Horinek, R. R. Netz, and L. Bocquet, Phys. Rev. Lett. 101, 226101 (2008).ADSCrossRefGoogle Scholar
  39. 39.
    Y. W. Zhang, X. S. Chen, and W. Chen, Commun. Theor. Phys. 66, 467 (2016).ADSCrossRefGoogle Scholar
  40. 40.
    K. Christensen, Physica. A 340, 527 (2004).ADSCrossRefGoogle Scholar
  41. 41.
    D. Stauffer, and A. Aharony, Introduction to Percolation Theory (CRC Press, Boca Raton, 1994), p. 1.zbMATHGoogle Scholar
  42. 42.
    J. B. Rundle, and S. R. Brown, J. Stat. Phys. 65, 403 (1991).ADSCrossRefGoogle Scholar
  43. 43.
    R. Capozza, A. Vanossi, A. Vezzani, and S. Zapperi, Phys. Rev. Lett. 103, 085502 (2009), arXiv: 0906.4504.ADSCrossRefGoogle Scholar
  44. 44.
    T. Hatano, Geophys. Res. Lett. 36, L18304 (2009), arXiv: 0906.3764.Google Scholar
  45. 45.
    N. W. Mueggenburg, Phys. Rev. E 71, 031301 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Data Science Research Center, Faculty of ScienceKunming University of Science and TechnologyKunmingChina
  2. 2.CAS Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina
  3. 3.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
  4. 4.State Key Laboratory of Multiphase Complex System, Institute of Process EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations