Advertisement

The Coulomb interaction in van der Waals heterostructures

  • Le Huang
  • MianZeng Zhong
  • HuiXiong Deng
  • Bo Li
  • ZhongMing Wei
  • JingBo LiEmail author
  • SuHuai WeiEmail author
Article

Abstract

The giant Stark effect (GSE) in a set of van der Waals (vdW) heterostructures is studied using first-principles methods. A straightforward model based on quasi-Fermi levels is proposed to describe the influence of an external perpendicular electric field on both band gap and band edges. Although a general linear GSE is observed, which is induced by the almost linear variation of the band edges of each layer in the heterostructures, when vdW heterostructures is subjected to small electric fields the variation becomes nonlinear. This can be attributed to the band offsets-induced interlayer charge transfer and resulted intraand inter-layer Coulomb interactions. Our work, thus offers new insight into the mechanism of the nonlinear GSE in vdW heterostructures, which is important for the applications of vdW heterostructures on nanoelectronic devices.

Keywords

van der Waals heterostructures gaint Stark effect Coulomb interaction charge transfer 

Supplementary material

11433_2018_9294_MOESM1_ESM.docx (652 kb)
Supplementary material, approximately 228 KB.

References

  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H. Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, Science 331, 568 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, Nano Lett. 12, 5576 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, and H. Zhang, Angew. Chem. Int. Ed. 50, 11093 (2011).CrossRefGoogle Scholar
  5. 5.
    L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Nat. Nanotech. 9, 372 (2014), arXiv: 1401.4117.ADSCrossRefGoogle Scholar
  6. 6.
    Y. Cui, B. Li, J. B. Li, and Z. M. Wei, Sci. China-Phys. Mech. Astron. 61, 016801 (2018).ADSCrossRefGoogle Scholar
  7. 7.
    X. X. Xue, Y. X. Feng, L. Liao, Q. J. Chen, D. Wang, L. M. Tang, and K. Chen, J. Phys.-Condens. Matter 30, 125001 (2018).ADSCrossRefGoogle Scholar
  8. 8.
    A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, Nano Lett. 11, 2396 (2011), arXiv: 1103.4510.ADSCrossRefGoogle Scholar
  9. 9.
    L. P. Tang, L. M. Tang, H. Geng, Y. P. Yi, Z. Wei, K. Q. Chen, and H. X. Deng, Appl. Phys. Lett. 112, 012101 (2018).ADSCrossRefGoogle Scholar
  10. 10.
    X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, Nat. Nanotech. 9, 682 (2014), arXiv: 1407.6395.ADSCrossRefGoogle Scholar
  11. 11.
    P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Nat. Commun. 6, 6242 (2015), arXiv: 1403.4985.ADSCrossRefGoogle Scholar
  12. 12.
    Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, ACS Nano 8, 8292 (2014).Google Scholar
  13. 13.
    M. Ishigami, J. D. Sau, S. Aloni, M. L. Cohen, and A. Zettl, Phys. Rev. Lett. 94, 056804 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    F. Zheng, Z. Liu, J. Wu, W. Duan, and B. L. Gu, Phys. Rev. B 78, 085423 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    K. H. Khoo, M. S. C. Mazzoni, and S. G. Louie, Phys. Rev. B 69, 201401 (2004).ADSCrossRefGoogle Scholar
  16. 16.
    A. J. Bennett, R. B. Patel, J. Skiba-Szymanska, C. A. Nicoll, I. Farrer, D. A. Ritchie, and A. J. Shields, Appl. Phys. Lett. 97, 031104 (2010), arXiv: 1011.2436.ADSCrossRefGoogle Scholar
  17. 17.
    C. H. Park, and S. G. Louie, Nano Lett. 8, 2200 (2008), arXiv: 0808.1833.ADSCrossRefGoogle Scholar
  18. 18.
    T. Takenobu, Y. Murayama, and Y. Iwasa, Appl. Phys. Lett. 89, 263510 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, Appl. Phys. Lett. 104, 103106 (2014), arXiv: 1402.5718.ADSCrossRefGoogle Scholar
  20. 20.
    A. Ramasubramaniam, D. Naveh, and E. Towe, Phys. Rev. B 84, 205325 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer, and T. Mueller, Nano Lett. 14, 4785 (2014), arXiv: 1403.2652.ADSCrossRefGoogle Scholar
  22. 22.
    L. Huang, N. Huo, Y. Li, H. Chen, J. Yang, Z. Wei, J. Li, and S. S. Li, J. Phys. Chem. Lett. 6, 2483 (2015).CrossRefGoogle Scholar
  23. 23.
    L. Huang, and J. Li, Appl. Phys. Lett. 108, 083101 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    Y. Ding, and Y. Wang, Appl. Phys. Lett. 103, 043114 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    N. Lu, H. Guo, L. Li, J. Dai, L. Wang, W. N. Mei, X. Wu, and X. C. Zeng, Nanoscale 6, 2879 (2014), arXiv: 1312.2257.ADSCrossRefGoogle Scholar
  26. 26.
    J. E. Padilha, A. Fazzio, and A. J. R. da Silva, Phys. Rev. Lett. 114, 066803 (2015).ADSCrossRefGoogle Scholar
  27. 27.
    G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).ADSCrossRefGoogle Scholar
  28. 28.
    G. Kresse, and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
  29. 29.
    P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).ADSCrossRefGoogle Scholar
  30. 30.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  31. 31.
    S. Grimme, J. Comput. Chem. 27, 1787 (2006).CrossRefGoogle Scholar
  32. 32.
    H. J. Monkhorst, and J. D. Pack, Phys. Rev. B 13, 5188 (1976).ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    K. Dolui, and S. Y. Quek, Sci. Rep. 5, 11699 (2015), arXiv: 1503.03647.ADSCrossRefGoogle Scholar
  34. 34.
    C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, Nat. Nanotech. 9, 676 (2014), arXiv: 1403.3062.ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials and EnergyGuangdong University of TechnologyGuangzhouChina
  2. 2.State Key Laboratory of Superlattices and Microstructures, Institute of SemiconductorsUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Beijing Computational Science Research CenterBeijingChina
  4. 4.Department of Applied Physics, School of Physics and ElectronicsHunan UniversityChangshaChina

Personalised recommendations