Advertisement

Enhancement of pulsed laser ablation assisted with continuous wave laser irradiation

  • Ye Ding
  • LiJun YangEmail author
  • MingHui Hong
Article

Abstract

Continuous wave (CW) laser irradiation is employed to enhance the pulsed laser ablation of silicon and stainless steel (316L) samples. Different surface temperatures generated by the CW laser irradiation are set as the initial working circumstance for the pulsed laser ablation. The diameter and depth of laser-ablated craters are measured to study threshold fluence, pulse incubation coefficient and ablation rate under different surface temperatures. Numerical simulation employing Heat Transfer in Solid and Deformed Geometry Interface modules in COMSOL is performed to estimate ablation rate theoretically based on Hertz-Knudsen equation. The realized crater-related data are analyzed to further obtain their dependences on surface temperature. The parametric and morphological studies indicate that the weakened plasma shielding effect and thermal diffusion in the ablated region induced by the CW laser irradiation lead to the enhanced pulsed laser ablation significantly.

Keywords

enhanced pulsed laser ablation CW laser irradiation Hertz-Knudsen equation parametric and morphological studies 

Supplementary material

11433_2018_9288_MOESM1_ESM.pdf (223 kb)
Supplementary material, approximately 223 KB.

References

  1. 1.
    Y. Cao, X. Zhao, and Y. C. Shin, J. Laser Appl. 25, 032002 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    I. Bozsóki, B. Balogh, and P. Gordon, Optics Laser Tech. 43, 1212 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    K. Xu, C. Zhang, R. Zhou, R. Ji, and M. Hong, Opt. Express 24, 10352 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    M. H. Mahdieh, M. Nikbakht, Z. E. Moghadam, and M. Sobhani, Appl. Surf. Sci. 256, 1778 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    A. Dupont, P. Caminat, P. Bournot, and J. P. Gauchon, J. Appl. Phys. 78, 2022 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    D. Kim, and H. Lee, J. Appl. Phys. 89, 5703 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    S. Zhu, Y. F. Lu, and M. H. Hong, Appl. Phys. Lett. 79, 1396 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    C. Gerhard, S. Roux, S. Brückner, S. Wieneke, and W. Viöl, Appl. Phys. A 108, 107 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    S. Kajita, N. Ohno, S. Takamura, W. Sakaguchi, and D. Nishijima, Appl. Phys. Lett. 91, 261501 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    S. Sinha, Appl. Phys. A 112, 855 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    S. Tao, B. Wu, Y. Zhou, and Y. Gao, J. Appl. Phys. 106, 123507 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    A. Miotello, and R. Kelly, Appl. Phys. Lett. 67, 3535 (1995).ADSCrossRefGoogle Scholar
  13. 13.
    X. Xu, and D. A. Willis, J. Heat Transfer 124, 293 (2002).CrossRefGoogle Scholar
  14. 14.
    B. Wu, and Y. C. Shin, J. Appl. Phys. 97, 113517 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    R. D. Pehlke, A. Jeyarajan, and H. Wada, Summary of thermal properties for casting alloys and mold materials, Technical Report (NASA STI/Recon, 1982).Google Scholar
  16. 16.
    N. Liu, J. Laser Laser Micro/Nanoeng. 11, 232 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    A. Ben–Yakar, and R. L. Byer, J. Appl. Phys. 96, 5316 (2004).ADSCrossRefGoogle Scholar
  18. 18.
    J. M. Liu, Opt. Lett. 7, 196 (1982).ADSCrossRefGoogle Scholar
  19. 19.
    L. Yang, Y. Ding, B. Cheng, J. He, G. Wang, and Y. Wang, Appl. Surf. Sci. 434, 831 (2018).ADSCrossRefGoogle Scholar
  20. 20.
    J. Byskov–Nielsen, J. M. Savolainen, M. S. Christensen, and P. Balling, Appl. Phys. A 101, 97 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    H. C. Le, D. E. Zeitoun, J. D. Parisse, M. Sentis, and W. Marine, Phys. Rev. E 62, 4152 (2000).ADSCrossRefGoogle Scholar
  22. 22.
    Y. Wang, A. Chen, Y. Jiang, L. Sui, X. Wang, D. Zhang, D. Tian, S. Li, and M. Jin, Phys. Plasm. 24, 013301 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of EducationHarbin Institute of TechnologyHarbinChina
  2. 2.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore
  3. 3.School of Mechatronics EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations