Advertisement

Thermally activated flux flow, vortex-glass phase transition and the mixed-state Hall effect in 112-type iron pnictide superconductors

  • XiangZhuo Xing
  • ZhanFeng Li
  • XiaoLei Yi
  • JiaJia Feng
  • ChunQiang Xu
  • Nan Zhou
  • Yan Meng
  • YuFeng Zhang
  • YongQiang Pan
  • LingYao Qin
  • Wei Zhou
  • HaiJun Zhao
  • ZhiXiang Shi
Article
  • 6 Downloads

Abstract

The transport properties in the mixed state of high-quality Ca0.8La0.2Fe0.98Co0.02As2 single crystal, a newly discovered 112-type iron pnictide superconductor, are comprehensively studied by magneto-resistivity measurement. The field-dependent activation energy, U0, is derived in the framework of thermally activated flux flow (TAFF) theory, yielding a power law dependence U0~Hα with a crossover at a magnetic field around 2 T in both Hab and H//ab, which is ascribed to the different pinning mechanisms. Moreover, we have clearly observed the vortex phase transition from vortex-glass to vortex-liquid according to the vortex-glass model, and vortex phase diagrams are constructed for both Hab and H//ab. Finally, the results of mixed-state Hall effect show that no sign reversal of transverse resistivity ρxy(H) is detected, indicating that the Hall component arising from the vortex flow is also negative based on the time dependent Ginzburg-Landau (TDGL) theory. Meanwhile, the transverse resistivity ρxy(H) and the longitudinal resistivity ρxx(H) follow the relation |ρxy(H)|=xx(H)β well with an exponent β~2.0, which is in line with the results in theories or experiments previously reported on some high-Tc cuprates.

Keywords

thermally activated flux flow vortex-glass transition mixed-state Hall effect 112-type iron pnictide superconductors 

References

  1. 1.
    Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).CrossRefGoogle Scholar
  2. 2.
    H. S. Lee, M. Bartkowiak, J. S. Kim, and H. J. Lee, Phys. Rev. B 82, 104523 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    R. Prozorov, N. Ni, M. A. Tanatar, V. G. Kogan, R. T. Gordon, C. Martin, E. C. Blomberg, P. Prommapan, J. Q. Yan, S. L. Bud’Ko, and P. C. Canfield, Phys. Rev. B 78, 224506 (2008), arXiv: 0810.1338.ADSCrossRefGoogle Scholar
  4. 4.
    S. R. Ghorbani, X. L. Wang, M. Shabazi, S. X. Dou, K. Y. Choi, and C. T. Lin, Appl. Phys. Lett. 100, 072603 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    Y. Sun, S. Pyon, T. Tamegai, R. Kobayashi, T. Watashige, S. Kasahara, Y. Matsuda, and T. Shibauchi, Phys. Rev. B 92, 144509 (2015), arXiv: 1510.05753.ADSCrossRefGoogle Scholar
  6. 6.
    W. Zhou, X. Xing, W. Wu, H. Zhao, and Z. Shi, Sci. Rep. 6, 22278 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    B. Shen, P. Cheng, Z. Wang, L. Fang, C. Ren, L. Shan, and H. H. Wen, Phys. Rev. B 81, 014503 (2010), arXiv: 0910.3600.ADSCrossRefGoogle Scholar
  8. 8.
    S. Salem-Sugui Jr., L. Ghivelder, A. D. Alvarenga, L. F. Cohen, K. A. Yates, K. Morrison, J. L. Pimentel Jr., H. Luo, Z. Wang, and H. H. Wen, Phys. Rev. B 82, 054513 (2010), arXiv: 1008.2880.ADSCrossRefGoogle Scholar
  9. 9.
    S. Sun, S. Wang, C. Li, and H. Lei, Supercond. Sci. Technol. 31, 015003 (2018), arXiv: 1705.08810.ADSCrossRefGoogle Scholar
  10. 10.
    X. Yi, C. Wang, Q. Tang, T. Peng, Y. Qiu, J. Xu, H. Sun, Y. Luo, and B. Yu, Supercond. Sci. Technol. 29, 105015 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    L. Jiao, Y. Kohama, J. L. Zhang, H. D. Wang, B. Maiorov, F. F. Balakirev, Y. Chen, L. N. Wang, T. Shang, M. H. Fang, and H. Q. Yuan, Phys. Rev. B 85, 064513 (2012), arXiv: 1106.2283.ADSCrossRefGoogle Scholar
  12. 12.
    J. Jaroszynski, F. Hunte, L. Balicas, Y. Jo, I. Raicevic, A. Gurevich, D. C. Larbalestier, F. F. Balakirev, L. Fang, P. Cheng, Y. Jia, and H. H. Wen, Phys. Rev. B 78, 174523 (2008), arXiv: 0810.2469.ADSCrossRefGoogle Scholar
  13. 13.
    G. Prando, P. Carretta, R. de Renzi, S. Sanna, A. Palenzona, M. Putti, and M. Tropeano, Phys. Rev. B 83, 174514 (2011), arXiv: 1102.1404.ADSCrossRefGoogle Scholar
  14. 14.
    S. Salem-Sugui Jr., J. Mosqueira, A. D. Alvarenga, D. Sóñora, A. Crisan, A. M. Ionescu, S. Sundar, D. Hu, S. L. Li, and H. Q. Luo, Supercond. Sci. Technol. 30, 055003 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    J. C. Lu, Y. Yu, L. Pi, and Y. H. Zhang, Chin. Phys. B 23, 127402 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    M. Andersson, A. Rydh, and Ö. Rapp, Phys. Rev. B 63, 184511 (2001).ADSCrossRefGoogle Scholar
  17. 17.
    B. D. Josephson, Phys. Lett. 16, 242 (1965).ADSCrossRefGoogle Scholar
  18. 18.
    S. J. Hagen, A. W. Smith, M. Rajeswari, J. L. Peng, Z. Y. Li, R. L. Greene, S. N. Mao, X. X. Xi, S. Bhattacharya, Q. Li, and C. J. Lobb, Phys. Rev. B 47, 1064 (1993).ADSCrossRefGoogle Scholar
  19. 19.
    V. N. Narozhnyi, J. Freudenberger, V. N. Kochetkov, K. A. Nenkov, G. Fuchs, A. Handstein, and K. H. Müller, Phys. Rev. B 59, 14762 (1999).ADSCrossRefGoogle Scholar
  20. 20.
    A. V. Samoilov, Z. G. Ivanov, and L. G. Johansson, Phys. Rev. B 49, 3667 (1994).ADSCrossRefGoogle Scholar
  21. 21.
    R. C. Budhani, S. H. Liou, and Z. X. Cai, Phys. Rev. Lett. 71, 621 (1993).ADSCrossRefGoogle Scholar
  22. 22.
    S. Bhattacharya, M. J. Higgins, and T. V. Ramakrishnan, Phys. Rev. Lett. 73, 1699 (1994).ADSCrossRefGoogle Scholar
  23. 23.
    Y. Matsuda, T. Nagaoka, G. Suzuki, K. Kumagai, M. Suzuki, M. Machida, M. Sera, M. Hiroi, and N. Kobayashi, Phys. Rev. B 52, R15749 (1995).ADSCrossRefGoogle Scholar
  24. 24.
    T. Nagaoka, Y. Matsuda, H. Obara, A. Sawa, T. Terashima, I. Chong, M. Takano, and M. Suzuki, Phys. Rev. Lett. 80, 3594 (1998).ADSCrossRefGoogle Scholar
  25. 25.
    R. Jin, and H. R. Ott, Phys. Rev. B 57, 13872 (1998).ADSCrossRefGoogle Scholar
  26. 26.
    L. M. Wang, H. C. Yang, and H. E. Horng, Phys. Rev. Lett. 78, 527 (1997).ADSCrossRefGoogle Scholar
  27. 27.
    Z. Wang, Y. Z. Zhang, X. F. Lu, H. Gao, L. Shan, and H. H. Wen, Physica C 422, 41 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    J. Bardeen, and M. J. Stephen, Phys. Rev. 140, A1197 (1965).ADSCrossRefGoogle Scholar
  29. 29.
    P. Nozières, and W. F. Vinen, Philos. Mag. 14, 667 (1966).ADSCrossRefGoogle Scholar
  30. 30.
    J. Luo, T. P. Orlando, J. M. Graybeal, X. D. Wu, and R. Muenchausen, Phys. Rev. Lett. 68, 690 (1992).ADSCrossRefGoogle Scholar
  31. 31.
    A. V. Samoilov, A. Legris, F. Rullier-Albenque, P. Lejay, S. Bouffard, Z. G. Ivanov, and L. G. Johansson, Phys. Rev. Lett. 74, 2351 (1995).ADSCrossRefGoogle Scholar
  32. 32.
    A. V. Samoilov, Phys. Rev. Lett. 71, 617 (1993).ADSCrossRefGoogle Scholar
  33. 33.
    L. M. Wang, U. C. Sou, H. C. Yang, L. J. Chang, C. M. Cheng, K. D. Tsuei, Y. Su, T. Wolf, and P. Adelmann, Phys. Rev. B 83, 134506 (2011).ADSCrossRefGoogle Scholar
  34. 34.
    H. Sato, T. Katase, W. N. Kang, H. Hiramatsu, T. Kamiya, and H. Hosono, Phys. Rev. B 87, 064504 (2013), arXiv: 1302.3696.ADSCrossRefGoogle Scholar
  35. 35.
    L. M. Wang, C. Y. Wang, U. C. Sou, H. C. Yang, L. J. Chang, C. Redding, Y. Song, P. Dai, and C. Zhang, J. Phys.-Condens. Matter 25, 395702 (2013).CrossRefGoogle Scholar
  36. 36.
    H. Lei, R. Hu, E. S. Choi, and C. Petrovic, Phys. Rev. B 82, 134525 (2010), arXiv: 1010.0263.ADSCrossRefGoogle Scholar
  37. 37.
    N. Katayama, K. Kudo, S. Onari, T. Mizukami, K. Sugawara, Y. Sugiyama, Y. Kitahama, K. Iba, K. Fujimura, N. Nishimoto, M. Nohara, and H. Sawa, J. Phys. Soc. Jpn. 82, 123702 (2013), arXiv: 1311.1303.ADSCrossRefGoogle Scholar
  38. 38.
    X. Xing, W. Zhou, N. Zhou, F. Yuan, Y. Pan, H. Zhao, X. Xu, and Z. Shi, Supercond. Sci. Technol. 29, 055005 (2016), arXiv: 1603.05392.ADSCrossRefGoogle Scholar
  39. 39.
    X. Xing, W. Zhou, J. Wang, Z. Zhu, Y. Zhang, N. Zhou, B. Qian, X. Xu, and Z. Shi, Sci. Rep. 7, 45943 (2017).ADSCrossRefGoogle Scholar
  40. 40.
    H. Yakita, H. Ogino, T. Okada, A. Yamamoto, K. Kishio, T. Tohei, Y. Ikuhara, Y. Gotoh, H. Fujihisa, K. Kataoka, H. Eisaki, and J. Shimoyama, J. Am. Chem. Soc. 136, 846 (2014).CrossRefGoogle Scholar
  41. 41.
    X. Xing, W. Zhou, B. Xu, N. Li, Y. Sun, Y. Zhang, and Z. Shi, J. Phys. Soc. Jpn. 84, 075001 (2015).ADSCrossRefGoogle Scholar
  42. 42.
    J. Deak, M. McElfresh, D. W. Face, and W. L. Holstein, Phys. Rev. B 52, R3880 (1995).ADSCrossRefGoogle Scholar
  43. 43.
    W. K. Kwok, S. Fleshler, U. Welp, V. M. Vinokur, J. Downey, G. W. Crabtree, and M. M. Miller, Phys. Rev. Lett. 69, 3370 (1992).ADSCrossRefGoogle Scholar
  44. 44.
    G. Blatter, M. V. Feigel’Man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).ADSCrossRefGoogle Scholar
  45. 45.
    T. T. M. Palstra, B. Batlogg, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. Lett. 61, 1662 (1988).ADSCrossRefGoogle Scholar
  46. 46.
    T. T. M. Palstra, B. Batlogg, R. B. van Dover, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 41, 6621 (1990).ADSCrossRefGoogle Scholar
  47. 47.
    W. Zhou, J. Zhuang, F. Yuan, X. Li, X. Xing, Y. Sun, and Z. Shi, Appl. Phys. Express 7, 063102 (2014), arXiv: 1405.6558.ADSCrossRefGoogle Scholar
  48. 48.
    D. Ahmad, W. J. Choi, Y. I. Seo, S. Seo, S. Lee, and Y. S. Kwon, Results Phys. 7, 16 (2017).ADSCrossRefGoogle Scholar
  49. 49.
    X. L. Wang, S. R. Ghorbani, S. I. Lee, S. X. Dou, C. T. Lin, T. H. Johansen, K. H. Müller, Z. X. Cheng, G. Peleckis, M. Shabazi, A. J. Qviller, V. V. Yurchenko, G. L. Sun, and D. L. Sun, Phys. Rev. B 82, 024525 (2010), arXiv: 1002.2095.ADSCrossRefGoogle Scholar
  50. 50.
    Y. Yeshurun, and A. P. Malozemoff, Phys. Rev. Lett. 60, 2202 (1988).ADSCrossRefGoogle Scholar
  51. 51.
    D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Rev. B 43, 130 (1991).ADSCrossRefGoogle Scholar
  52. 52.
    A. Rydh, Ö. Rapp, and M. Andersson, Phys. Rev. Lett. 83, 1850 (1999).ADSCrossRefGoogle Scholar
  53. 53.
    Z. D. Wang, J. Dong, and C. S. Ting, Phys. Rev. Lett. 72, 3875 (1994).ADSCrossRefGoogle Scholar
  54. 54.
    V. M. Vinokur, V. B. Geshkenbein, M. V. Feigel’man, and G. Blatter, Phys. Rev. Lett. 71, 1242 (1993).ADSCrossRefGoogle Scholar
  55. 55.
    N. B. Kopnin, B. I. Ivlev, and V. A. Kalatsky, J. Low Temp. Phys. 90, 1 (1993).ADSCrossRefGoogle Scholar
  56. 56.
    A. T. Dorsey, Phys. Rev. B 46, 8376 (1992).ADSCrossRefGoogle Scholar
  57. 57.
    H. Fukuyama, H. Ebisawa, and T. Tsuzuki, Prog. Theor. Phys. 46, 1028 (1971).ADSCrossRefGoogle Scholar
  58. 58.
    A. G. Aronov, S. Hikami, and A. I. Larkin, Phys. Rev. B 51, 3880 (1995).ADSCrossRefGoogle Scholar
  59. 59.
    W. Zhou, F. Ke, X. Xu, R. Sankar, X. Xing, C. Q. Xu, X. F. Jiang, B. Qian, N. Zhou, Y. Zhang, M. Xu, B. Li, B. Chen, and Z. X. Shi, Phys. Rev. B 96, 184503 (2017).ADSCrossRefGoogle Scholar
  60. 60.
    A. T. Dorsey, and M. P. A. Fisher, Phys. Rev. Lett. 68, 694 (1992).ADSCrossRefGoogle Scholar
  61. 61.
    W. N. Kang, D. H. Kim, S. Y. Shim, J. H. Park, T. S. Hahn, S. S. Choi, W. C. Lee, J. D. Hettinger, K. E. Gray, and B. Glagola, Phys. Rev. Lett. 76, 2993 (1996).ADSCrossRefGoogle Scholar
  62. 62.
    W. N. Kang, S. H. Yun, J. Z. Wu, and D. H. Kim, Phys. Rev. B 55, 621 (1997).ADSCrossRefGoogle Scholar
  63. 63.
    W. N. Kang, H. J. Kim, E. M. Choi, H. J. Kim, K. H. P. Kim, and S. I. Lee, Phys. Rev. B 65, 184520 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • XiangZhuo Xing
    • 1
  • ZhanFeng Li
    • 1
  • XiaoLei Yi
    • 1
  • JiaJia Feng
    • 1
  • ChunQiang Xu
    • 1
    • 2
  • Nan Zhou
    • 1
  • Yan Meng
    • 1
  • YuFeng Zhang
    • 1
  • YongQiang Pan
    • 1
  • LingYao Qin
    • 1
  • Wei Zhou
    • 2
  • HaiJun Zhao
    • 1
  • ZhiXiang Shi
    • 1
  1. 1.School of Physics and Key Laboratory of MEMS of the Ministry of EducationSoutheast UniversityNanjingChina
  2. 2.Advanced Functional Materials Lab and Department of PhysicsChangshu Institute of TechnologyChangshuChina

Personalised recommendations