Advertisement

Characterizing Bell nonlocality and EPR steering

  • HuaiXin CaoEmail author
  • ZhiHua Guo
Article

Abstract

Bell nonlocality and Einstein-Podolsky-Rosen (EPR) steering are very important quantum correlations in composite quantum systems. Bell nonlocality of a bipartite state is observed in some local quantum measurements, while EPR steering was first observed by Schrödinger in the context of famous EPR paradox. In this paper, we discuss the Bell nonlocality and EPR steering of bipartite states, including mathematical definitions and characterizations of these two quantum correlations, the convexity as well as the closedness of the sets of all Bell local states and all EPR unsteerable states, respectively. We also derive sufficient conditions for a state to be steerable; these conditions imply that Alice can steer Bob’s state whenever Alice has two POV measurements such that the sets of Bob’s normalized conditional states become two disjoint sets of pure states, or whenever she has one POV measurement such that Bob’s normalized conditional states become a linearly independent set of pure states.

Keywords

quantum state Bell nonlocality EPR steering composite quantum system quantum measurement 

References

  1. 1.
    M. S. Blok, N. Kalb, A. Reiserer, T. H. Taminiau, and R. Hanson, Faraday Discuss. 184, 173 (2015).ADSCrossRefGoogle Scholar
  2. 2.
    D. L. Deng, X. Li, and S. Das Sarma, Phys. Rev. X 7, 021021 (2017), arXiv: 1701.04844.Google Scholar
  3. 3.
    G. Chiribella, G. M. D’Ariano, and P. Perinotti, Phys. Rev. A 80, 022339 (2009), arXiv: 0904.4483.ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    D. Mulder, and G. Bianconi, arXiv: 1711.06290v3.Google Scholar
  5. 5.
    C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, Phys. Rev. A 71, 44305 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    S. M. Zhao, Z. G. Shen, H. Xiao, and L. Wang, Sci. China-Phys. Mech. Astron. 61, 090323 (2018).CrossRefGoogle Scholar
  7. 7.
    S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Rev. Mod. Phys. 79, 555 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    I. Marvian, and R. W. Spekkens, New J. Phys. 15, 033001 (2013), arXiv: 1104.0018.ADSCrossRefGoogle Scholar
  9. 9.
    Z. R. Gong, Z. W. Zhang, D. Z. Xu, N. Zhao, and C. P. Sun, Sci. China-Phys. Mech. Astron. 61, 040311 (2018).ADSCrossRefGoogle Scholar
  10. 10.
    B. Li, S. H. Jiang, S. M. Fei, and X. Q. Li-Jost, Sci. China-Phys. Mech. Astron. 61, 040321 (2018), arXiv: 1801.08476.ADSCrossRefGoogle Scholar
  11. 11.
    D. P. DiVincenzo, Science 270, 255 (1995).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    J. Zhou, B. J. Liu, Z. P. Hong, and Z. Y. Xue, Sci. China-Phys. Mech. Astron. 61, 010312 (2018), arXiv: 1705.08852.ADSCrossRefGoogle Scholar
  13. 13.
    M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information, 2nd ed. (Cambridge University Press, Cambridge, 2010).CrossRefzbMATHGoogle Scholar
  14. 14.
    S. Luo, Phys. Rev. A 77, 022301 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    Z. Guo, H. Cao, and Z. Chen, J. Phys. A-Math. Theor. 45, 145301 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    Y. C. Wu, and G. C. Guo, Phys. Rev. A 83, 062301 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    Z. Guo, H. Cao, and S. Qu, Inf. Sci. 289, 262 (2014).CrossRefGoogle Scholar
  18. 18.
    J. S. Bell, Phys. Physique Fizika 1, 195 (1964).MathSciNetCrossRefGoogle Scholar
  19. 19.
    N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Rev. Mod. Phys. 86, 419 (2014), arXiv: 1303.2849.ADSCrossRefGoogle Scholar
  20. 20.
    J. F. Clauser, and A. Shimony, Rep. Prog. Phys. 41, 1881 (1978).ADSCrossRefGoogle Scholar
  21. 21.
    D. Home, and F. Selleri, Riv. Nuovo Cim. 14, 1 (1991).CrossRefGoogle Scholar
  22. 22.
    L. A. Khalfin, and B. S. Tsirelson, Found Phys. 22, 879 (1992).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    B. S. Tsirelson, Hadronic J. Suppl. 8, 329 (1993).MathSciNetGoogle Scholar
  24. 24.
    A. Zeilinger, Rev. Mod. Phys. 71, S288 (1999).CrossRefGoogle Scholar
  25. 25.
    R. F. Werner, and M. M. Wolf, Phys. Rev. A 64, 032112 (2001).ADSCrossRefGoogle Scholar
  26. 26.
    M. Genovese, Phys. Rep. 413, 319 (2005).ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, Rev. Mod. Phys. 82, 665 (2010), arXiv: 0907.3584; Z. Chen and Y. J. Han, Chin. Sci. Bull. 61, 1072 (2016).ADSCrossRefGoogle Scholar
  28. 28.
    L. J. Zhao, Y. M. Guo, X. Q. Li-Jost, and S. M. Fei, Sci. China-Phys. Mech. Astron. 61, 070321 (2018).ADSCrossRefGoogle Scholar
  29. 29.
    Y. Yang, H. Cao, L. Chen, and Y. Huang, Int. J. Theor. Phys. 57, 1498 (2018).CrossRefGoogle Scholar
  30. 30.
    G. L. Long, W. Qin, Z. Yang, and J. L. Li, Sci. China-Phys. Mech. Astron. 61, 030311 (2018).ADSCrossRefGoogle Scholar
  31. 31.
    E. Schrödinger, and M. Born, Math. Proc. Camb. Phil. Soc. 31, 555 (1935).ADSCrossRefGoogle Scholar
  32. 32.
    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).ADSCrossRefGoogle Scholar
  33. 33.
    M. D. Reid, Phys. Rev. A 40, 913 (1989).ADSCrossRefGoogle Scholar
  34. 34.
    R. F. Werner, Phys. Rev. A 40, 4277 (1989).ADSCrossRefGoogle Scholar
  35. 35.
    Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, Phys. Rev. Lett. 68, 3663 (1992).ADSCrossRefGoogle Scholar
  36. 36.
    H. M. Wiseman, S. J. Jones, and A. C. Doherty, Phys. Rev. Lett. 98, 140402 (2007).ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid, Phys. Rev. A 80, 032112 (2009), arXiv: 0907.1109.ADSCrossRefGoogle Scholar
  38. 38.
    D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde, Nat. Phys. 6, 845 (2010), arXiv: 0909.0805.CrossRefGoogle Scholar
  39. 39.
    A. J. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. G. Cavalcanti, H. M. Wiseman, and G. J. Pryde, Phys. Rev. X 2, 031003 (2012), arXiv: 1111.0739.Google Scholar
  40. 40.
    V. Händchen, T. Eberle, S. Steinlechner, A. Samblowski, T. Franz, R. F. Werner, and R. Schnabel, Nat. Photon 6, 596 (2012).CrossRefGoogle Scholar
  41. 41.
    C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, Phys. Rev. A 85, 010301(R) (2012), arXiv: 1109.1435.ADSCrossRefGoogle Scholar
  42. 42.
    B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, New J. Phys. 14, 053030 (2012), arXiv: 1111.0760.ADSCrossRefGoogle Scholar
  43. 43.
    S. Steinlechner, J. Bauchrowitz, T. Eberle, and R. Schnabel, Phys. Rev. A 87, 022104 (2013), arXiv: 1112.0461.ADSCrossRefGoogle Scholar
  44. 44.
    M. D. Reid, Phys. Rev. A 88, 062338 (2013), arXiv: 1402.4235.ADSCrossRefGoogle Scholar
  45. 45.
    P. Skrzypczyk, M. Navascués, and D. Cavalcanti, Phys. Rev. Lett. 112, 180404 (2014), arXiv: 1311.4590.ADSCrossRefGoogle Scholar
  46. 46.
    M. Piani, and J. Watrous, Phys. Rev. Lett. 114, 060404 (2015), arXiv: 1406.0530.ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    M. Żukowski, A. Dutta, and Z. Yin, Phys. Rev. A 91, 032107 (2015), arXiv: 1411.5986.ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    M. T. Quintino, T. Vértesi, D. Cavalcanti, R. Augusiak, M. Demianowicz, A. Acín, and N. Brunner, Phys. Rev. A 92, 032107 (2015), arXiv: 1501.03332.ADSCrossRefGoogle Scholar
  49. 49.
    H. Zhu, M. Hayashi, and L. Chen, Phys. Rev. Lett. 116, 070403 (2016).ADSCrossRefGoogle Scholar
  50. 50.
    K. Sun, X. J. Ye, J. S. Xu, X. Y. Xu, J. S. Tang, Y. C. Wu, J. L. Chen, C. F. Li, and G. C. Guo, Phys. Rev. Lett. 116, 160404 (2016), arXiv: 1511.01679.ADSCrossRefGoogle Scholar
  51. 51.
    Q. Quan, H. Zhu, S. Y. Liu, S. M. Fei, H. Fan, and W. L. Yang, Sci. Rep. 6, 22025 (2016), arXiv: 1601.00113.ADSCrossRefGoogle Scholar
  52. 52.
    J. L. Chen, C. Ren, C. Chen, X. J. Ye, and A. K. Pati, Sci. Rep. 6, 39063 (2016), arXiv: 1606.07060.ADSCrossRefGoogle Scholar
  53. 53.
    D. Cavalcanti, and P. Skrzypczyk, Rep. Prog. Phys. 80, 024001 (2017), arXiv: 1604.00501.ADSCrossRefGoogle Scholar
  54. 54.
    D. Das, S. Datta, C. Jebaratnam, A. S. Majumdar, Phys. Rev. A 97, 022110 (2018).ADSCrossRefGoogle Scholar
  55. 55.
    C. Ren, H. Y. Su, H. Shi, and J. Chen, Phys. Rev. A 97, 032119 (2018).ADSCrossRefGoogle Scholar
  56. 56.
    C. Zheng, Z. Guo, and H. Cao, Int. J. Theor. Phys. 57, 1787 (2018).CrossRefGoogle Scholar
  57. 57.
    M. J. Zhao, T. Ma, T. G. Zhang, and S. M. Fei, Sci. China-Phys. Mech. Astron. 59, 120313 (2016), arXiv: 1610.08146.ADSCrossRefGoogle Scholar
  58. 58.
    H. X. Cao, Sci. China-Phys. Mech. Astron. 60, 020332 (2017).ADSCrossRefGoogle Scholar
  59. 59.
    S. J. Wei, T. Xin, and G. L. Long, Sci. China-Phys. Mech. Astron. 61, 070311 (2018), arXiv: 1706.08080.ADSCrossRefGoogle Scholar
  60. 60.
    S. Yu, Q. Chen, C. Zhang, C. H. Lai, and C. H. Oh, Phys. Rev. Lett. 109, 120402 (2012), arXiv: 1205.1179.ADSCrossRefGoogle Scholar
  61. 61.
    C. Wu, J. L. Chen, X. J. Ye, H. Y. Su, D. L. Deng, Z. Wang, and C. H. Oh, Sci. Rep. 4, 4291 (2015), arXiv: 1402.3442.CrossRefGoogle Scholar
  62. 62.
    Z. Guo, H. Cao, and S. Qu, Found Phys. 45, 355 (2015).ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    J. L. Chen, X. J. Ye, C. Wu, H. Y. Su, A. Cabello, L. C. Kwek, and C. H. Oh, Sci. Rep. 3, 2143 (2013), arXiv: 1204.1870.CrossRefGoogle Scholar
  64. 64.
    H. C. Nguyen, and K. Luoma, Phys. Rev. A 95, 042117 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and Information ScienceShaanxi Normal UniversityXi’anChina

Personalised recommendations