Explore the QCD phase transition phenomena from a multiphase transport model

  • XiaoHai Jin
  • JinHui ChenEmail author
  • ZiWei Lin
  • GuoLiang Ma
  • YuGang MaEmail author
  • Song Zhang


We study the phase structure of QCD matter in the framework of a multiphase transport model by implementing a strong local parton density fluctuation scenario. Our calculations on the beam energy dependence of net-proton high moment show that local parton density fluctuation only has a small effect. But it becomes important when all baryons are included. We then study the effect on elliptic flow and find that an enhanced local parton density fluctuation leads to a significant effect on protons but a small effect on pions. Our study provides a reference of transport dynamics on QCD phase transition phenomena and will be relevant for the upcoming phase II of the beam energy scan program at RHIC.


QCD phase diagram parton density fluctuation AMPT model 


  1. 1.
    O. Kaczmarek, and F. Zantow, Phys. Rev. D 71, 114510 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    M. Cheng, N. H. Christ, S. Datta, J. van der Heide, C. Jung, F. Karsch, O. Kaczmarek, E. Laermann, R. D. Mawhinney, C. Miao, P. Petreczky, K. Petrov, C. Schmidt, and T. Umeda, Phys. Rev. D 74, 054507 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    R. Gupta, arXiv: hep-lat/9807028.Google Scholar
  4. 4.
    M. M. Aggarwal, et al. (STAR Collaboration), arXiv: 1007.2613.Google Scholar
  5. 5.
    D. Teaney, J. Lauret, and E. V. Shuryak, Phys. Rev. Lett. 86, 4783 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    L. Adamczyk, et al. (STAR Collaboration), Phys. Rev. Lett. 110, 142301 (2013), arXiv: 1301.2347.ADSCrossRefGoogle Scholar
  7. 7.
    L. Adamczyk, et al. STAR Collaboration), (Phys. Rev. Lett. 112, 162301 (2014), arXiv: 1401.3043.ADSCrossRefGoogle Scholar
  8. 8.
    M. Nahrgang, T. Schuster, M. Mitrovski, R. Stock, and M. Bleicher, Eur. Phys. J. C 72, 2143 (2012), arXiv: 0903.2911.ADSCrossRefGoogle Scholar
  9. 9.
    A. Bzdak, V. Koch, and V. Skokov, Phys. Rev. C 87, 014901 (2013), arXiv: 1203.4529.ADSCrossRefGoogle Scholar
  10. 10.
    M. M. Aggarwal, et al. (STAR Collaboration), Phys. Rev. Lett. 105, 022302 (2010), arXiv: 1004.4959.ADSCrossRefGoogle Scholar
  11. 11.
    L. Adamczyk, et al. (STAR Collaboration), Phys. Rev. Lett. 112, 032302 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    L. Adamczyk, et al. (STAR Collaboration), Nature 548, 62 (2017), arXiv: 1701.06657.ADSCrossRefGoogle Scholar
  13. 13.
    L. Adamczyk, et al. (STAR Collaboration), Phys. Rev. Lett. 113, 052302 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    K. J. Sun, L. W. Chen, C. M. Ko, and Z. B. Xu, Phys. Lett. B 774, 103 (2017), arXiv: 1702.07620.ADSCrossRefGoogle Scholar
  15. 15.
    K. J. Sun, L. W. Chen, C. M. Ko, J. Pu, and Z. B. Xu, Phys. Lett. B 781, 499 (2018), arXiv: 1801.09382.ADSCrossRefGoogle Scholar
  16. 16.
    H. Petersen, Nucl. Phys. A 967, 145 (2017), arXiv: 1704.02904.ADSCrossRefGoogle Scholar
  17. 17.
    X. F. Luo, and N. Xu, Nucl. Sci. Tech. 28, 112 (2017).CrossRefGoogle Scholar
  18. 18.
    C. Zhou, J. Xu, X. F. Luo, and F. Liu, Phys. Rev. C 96, 014909 (2017), arXiv: 1703.09114.ADSCrossRefGoogle Scholar
  19. 19.
    V. Vovchenko, L. J. Jiang, M. I. Gorenstein, and H. Stoecher, arXiv: 1711.07260.Google Scholar
  20. 20.
    Z. W. Lin, S. Pal, C. M. Ko, B. A. Li, and B. Zhang, Phys. Rev. C 64, 011902 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    X. N. Wang, and M. Gyulassy, Phys. Rev. D 44, 3501 (1991).ADSCrossRefGoogle Scholar
  22. 22.
    B. Zhang, Comput. Phys. Commun. 109, 193 (1998).ADSCrossRefGoogle Scholar
  23. 23.
    B. A. Li, and C. M. Ko, Phys. Rev. C 52, 2037 (1995).ADSCrossRefGoogle Scholar
  24. 24.
    X. H. Jin, J. H. Chen, Y. G. Ma, S. Zhang, C. J. Zhang, and C. Zhong, Nucl. Sci. Tech. 29, 54 (2018).CrossRefGoogle Scholar
  25. 25.
    L. Adamczyk, et al. (STAR Collaboration), Phys. Rev. C 96, 044904 (2017).ADSCrossRefGoogle Scholar
  26. 26.
    X. F. Luo, Phys. Rev. C 91, 034907 (2015), arXiv: 1410.3914.ADSCrossRefGoogle Scholar
  27. 27.
    Y. F. Lin, L. Z. Chen, and Z. M. Li, Phys. Rev. C 96, 044906 (2017), arXiv: 1707.04375.ADSCrossRefGoogle Scholar
  28. 28.
    Y. Zhou, S. S. Shi, K. Xiao, K. J. Wu, and F. Liu, Phys. Rev. C 82, 014905 (2010), arXiv: 1004.2558.ADSCrossRefGoogle Scholar
  29. 29.
    A. Bzdak, and V. Koch, Phys. Rev. C 86, 044904 (2012), arXiv: 1206.4286.ADSCrossRefGoogle Scholar
  30. 30.
    B. Ling, and M. A. Stephanov, Phys. Rev. C 93, 034915 (2016), arXiv: 1512.09125.ADSCrossRefGoogle Scholar
  31. 31.
    J. Y. Ollitrault, Nucl. Phys. A 638, 195c (1998).ADSCrossRefGoogle Scholar
  32. 32.
    U. Heinz, and R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123 (2013), arXiv: 1301.2826.ADSCrossRefGoogle Scholar
  33. 33.
    H. C. Song, Y. Zhou, and K. Gajdošová, Nucl. Sci. Tech. 28, 99 (2017).CrossRefGoogle Scholar
  34. 34.
    L. Ma, G. L. Ma, and Y. G. Ma, Phys. Rev. C 89, 044907 (2014), arXiv: 1404.5935.ADSCrossRefGoogle Scholar
  35. 35.
    H. L. Li, L. He, Z. W. Lin, D. Molnar, F. Q. Wang, and W. Xie, Phys. Rev. C 93, 051901 (2016), arXiv: 1601.05390ADSCrossRefGoogle Scholar
  36. 35a.
    H. L. Li, L. He, Z. W. Lin, D. Molnar, F. Q. Wang, and W. Xie, Phys. Rev. C 96, 014901 (2017), arXiv: 1604.07387.ADSCrossRefGoogle Scholar
  37. 36.
    Y. C. He, and Z. W. Lin, Phys. Rev. C 96, 014910 (2017), arXiv: 1703.02673.ADSCrossRefGoogle Scholar
  38. 37.
    Z. W. Lin, arXiv: 1704.08418.Google Scholar
  39. 38.
    C. J. Zhang, and J. Xu, Phys. Rev. C 96, 044907 (2017), arXiv: 1707.07272.ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Department of PhysicsEast Carolina UniversityGreenvilleUSA
  4. 4.Key Laboratory of Quarks and Lepton Physics (MOE) and Institute of Particle PhysicsCentral China Normal UniversityWuhanChina

Personalised recommendations