On the material constants measurement method of a fluid-saturated transversely isotropic poroelastic medium

  • Yue Gao
  • ZhanLi LiuEmail author
  • Zhuo Zhuang
  • Keh-Chih HwangEmail author


The fluid-saturated transversely isotropic poroelastic medium could be widely found in nature, e.g., the sedimentary rocks underground. To determine the eight independent material constants for the transversely isotropic poroelastic medium, a series of tests are discussed. Two undrained tests and one drained test are suggested as a set of tests of the least amount. For the verification purpose, two additional drained tests are also introduced as an option. The atmospheric dried test is discussed as a replacement of the traditional infiltrated drained test to save the time waiting for an equilibrium state. Some microscopic material constants, i.e., the unjacketed bulk coefficients, the porosity, and the compressibility of porous fluid, are measurable but unnecessary to determine the independent material constants of a poroelastic medium.


poroelastic constitutive model material constants measurement transversely isotropic medium 


  1. 1.
    M. A. Biot, J. Appl. Phys. 12, 155 (1941).ADSCrossRefGoogle Scholar
  2. 2.
    M. A. Biot, J. Appl. Phys. 26, 182 (1955).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    M. A. Biot, D. G. Willis, J. Appl. Mech. 24, 594 (1957).MathSciNetGoogle Scholar
  4. 4.
    J. R. Rice, and M. P. Cleary, Rev. Geophys. 14, 227 (1976).ADSCrossRefGoogle Scholar
  5. 5.
    E. Detournay, A. H. D. Cheng, in Analysis and Design Method, Comprehensive Rock Engineering: Principles, Practice and Projects, vol. II (Pergamon Pr, Oxford, 1993), pp. 113–171.CrossRefGoogle Scholar
  6. 6.
    M. Thompson, and J. R. Willis, J. Appl. Mech. 58, 612 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    A. H. D. Cheng, Int. J. Rock Mech. Min. Sci. 34, 199 (1997).CrossRefGoogle Scholar
  8. 8.
    Y. Gao, Z. Liu, Z. Zhuang, and K. C. Hwang, J. Appl. Mech 84, 051008 (2017).ADSCrossRefGoogle Scholar
  9. 9.
    Y. Gao, Z. Liu, Z. Zhuang, K. C. Hwang, Y. Wang, L. Yang, and H. Yang, J. Appl. Mech. 83, 061005 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Gao, Z. Liu, Z. Zhuang, D. Gao, and K. C. Hwang, J. Appl. Mech. 84, 111008 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    E. Detournay, and A. H. D. Cheng, Int. J. Rock Mech. Min. Sci. Geomech. Abstracts 25, 171 (1988).CrossRefGoogle Scholar
  12. 12.
    Y. Abousleiman, and L. Cui, Int. J. Solids Struct. 35, 4905 (1998).CrossRefGoogle Scholar
  13. 13.
    T. Wang, Z. L. Liu, Q. L. Zeng, Y. Gao, and Z. Zhuang, Sci. China-Phys. Mech. Astron. 60, 084612 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    C. Miehe, S. Mauthe, and S. Teichtmeister, J. Mech. Phys. Solids 82, 186 (2015).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Y. Kovalyshen, and E. Detournay, in Effective and Sustainable Hydraulic Fracturing, edited by A. P. Bunger, J. Mclennan, and R. Jeffrey (InTech, 2013), chap. 29, pp. 607–628.Google Scholar
  16. 16.
    S. V. Golovin, and A. N. Baykin, Int. J. Solids Struct. 69–70, 305 (2015).CrossRefGoogle Scholar
  17. 17.
    E. Fjaer, R. Holt, A. Raaen, R. Risnes, and P. Horsrud, Petroleum Related Rock Mechanics, 2nd ed. (Elsevier, Amsterdam, 2008).Google Scholar
  18. 18.
    A. Tarokh, Poroelastic response of saturated rock, Dissertation for the Doctoral Degree (University of Minnesota, Ann Arbor, 2016).Google Scholar
  19. 19.
    R. Y. Makhnenko, Deformation of fluid-saturated porous rock, Dissertation for the Doctoral Degree (University of Minnesota, Ann Arbor, 2013).Google Scholar
  20. 20.
    K. Sampath, Effect of confining pressure on pore volume in tight sandstones, Technical Report (Institute of Gas Technology, Chicago, 1982).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.AML, Department of Engineering MechanicsTsinghua UniversityBeijingChina
  2. 2.Center for Mechanics and MaterialsTsinghua UniversityBeijingChina

Personalised recommendations