Advertisement

Twisted optical communications using orbital angular momentum

  • Jian WangEmail author
Invited Review

Abstract

Angular momentum, a fundamental physical quantity, can be divided into spin angular momentum (SAM) and orbital angular momentum (OAM) in electromagnetic waves. Helically-phased or twisted light beams carrying OAM that exploit the spatial structure physical dimension of electromagnetic waves have benefited wide applications ranging from optical manipulation to quantum information processing. Using the two distinct properties of OAM, i.e., inherent orthogonality and unbounded states in principle, one can develop OAM modulation and OAM multiplexing techniques for twisted optical communications. OAM multiplexing is an alternative space-division multiplexing approach employing an orthogonal mode basis related to the spatial phase structure. In this paper, we review the recent progress in twisted optical communications using OAM in free space and fiber. The basic concept of momentum, angular momentum, SAM, OAM and OAM-carrying twisted optical communications, key techniques and devices of OAM generation/(de)multiplexing/detection, high-capacity spectrally-efficient free-space OAM links, fiber-based OAM links, and OAM processing functions are presented. Ultra-high spectral efficiency and petabit-scale freespace data links are achieved benefiting from OAM multiplexing. The key techniques and challenges of twisted optical communications are also discussed. Twisted optical communications using OAM are compatible with other existing physical dimensions such as frequency/wavelength, amplitude, phase, polarization and time, opening a possible way to facilitate continuous increase of the aggregate transmission capacity and spectral efficiency through N-dimensional multiplexing.

Keywords

fiber optical communications free-space optical communications modulation multiplexing orbital angular momentum space-division multiplexing spectral efficiency twisted optical communications twisted light structured light 

Notes

Acknowledgements

This work was supported by the National Basic Research Program of China (Grant No. 2014CB340004), the National Natural Science Foundation of China (Grant Nos. 11574001, 61761130082, 11774116, 11274131, and 61222502), the Royal Society-Newton Advanced Fellowship, the National Program for Support of Top-notch Young Professionals, the Yangtze River Excellent Young Scholars Program, the Natural Science Foundation of Hubei Province of China (Grant No. 2018CFA048), and the Program for HUST Academic Frontier Youth Team. The authors would like to gratefully acknowledge Shuhui Li, Jun Liu, Long Zhu, Jing Du, Zhe Zhao, Yifan Zhao, Shi Chen, Xiao Hu, Liang Fang, Shuang Zheng, Nan Zhou and Lulu Wang from Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Ming Luo, Chao Li, Dequan Xie and Qi Yang from the State Key Laboratory of Optical Comm. Technologies and Networks, Fan Zhang from Peking University, and Alan E. Willner from Department of Electrical Engineering, University of Southern California for their technical supports.

References

  1. 1.
    J. C. Maxwell, Philos. Trans. R. Soc. London 155, 459 (2013).Google Scholar
  2. 2.
    P. J. Winzer, IEEE LEOS Newslett. 23, 4 (2009).Google Scholar
  3. 3.
    P. J. Winzer, and G. J. Foschini, Opt. Express 19, 16680 (2011).ADSGoogle Scholar
  4. 4.
    X. Zhou, and J. J. Yu, J. Lightwave Technol. 27, 3641 (2009).ADSGoogle Scholar
  5. 5.
    P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, J. Lightwave Technol. 28, 547 (2010).ADSGoogle Scholar
  6. 6.
    D. Qian, M. F. Huang, E. Ip, Y. K. Huang, Y. Shao, J. Hu, and T. Wang, J. Lightwave Technol. 30, 1540 (2012).ADSGoogle Scholar
  7. 7.
    Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, Opt. Express 20, 12508 (2012).ADSGoogle Scholar
  8. 8.
    S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, Opt. Express 23, 4960 (2015).ADSGoogle Scholar
  9. 9.
    T. Richter, E. Palushani, C. Schmidt-Langhorst, R. Ludwig, L. Molle, M. Nolle, and C. Schubert, J. Lightwave Technol. 30, 504 (2012).ADSGoogle Scholar
  10. 10.
    D. J. Richardson, J. M. Fini, and L. E. Nelson, Nat. Photon. 7, 354 (2013). arXiv: 1303.3908.ADSGoogle Scholar
  11. 11.
    G. Li, N. Bai, N. Zhao, and C. Xia, Adv. Opt. Photon. 6, 413 (2014).Google Scholar
  12. 12.
    P. J. Winzer, Bell Labs Tech. J. 19, 22 (2014).Google Scholar
  13. 13.
    P. J. Winzer, Nat. Photon. 8, 345 (2014).ADSGoogle Scholar
  14. 14.
    J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, J. Lightwave Technol. 30, 658 (2012).ADSGoogle Scholar
  15. 15.
    H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, in 1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) Crosstalk-managed Transmission with 91.4-b/s/Hz Aggregate Spectral Efficiency: European Conference and Exhibition on Optical Communication 2012, Amsterdam, Netherlands, 16–20 September 2012 (OSA Technical Digest, Amsterdam, 2012), paper Th.3.C.1.Google Scholar
  16. 16.
    B. J. Puttnam, R. Luis, J. M. Delgado-Mendinueta, J. Sakaguchi, W. Klaus, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, Opt. Express 22, 21185 (2014).ADSGoogle Scholar
  17. 17.
    R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, J. Lightwave Technol. 30, 521 (2012).ADSGoogle Scholar
  18. 18.
    P. Sillard, M. Bigot-Astruc, and D. Molin, J. Lightwave Technol. 32, 2824 (2014).ADSGoogle Scholar
  19. 19.
    L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).ADSGoogle Scholar
  20. 20.
    M. Padgett, J. Courtial, and L. Allen, Phys. Today 57, 35 (2004).ADSGoogle Scholar
  21. 21.
    S. Franke-Arnold, L. Allen, and M. Padgett, Laser Photon. Rev. 2, 299 (2008).ADSGoogle Scholar
  22. 22.
    A. M. Yao, and M. J. Padgett, Adv. Opt. Photon. 3, 161 (2011).Google Scholar
  23. 23.
    M. Padgett, Proc. R. Soc. A-Math. Phys. Eng. Sci. 470, 20140633 (2014)ADSGoogle Scholar
  24. 24.
    M. J. Padgett, Opt. Express 25, 11265 (2017).ADSGoogle Scholar
  25. 25.
    A. E. Willner, J. Wang, and H. Huang, Science 337, 655 (2012).ADSMathSciNetGoogle Scholar
  26. 26.
    A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, Adv. Opt. Photon. 7, 66 (2015).Google Scholar
  27. 27.
    J. Wang, Photon. Res. 4, B14 (2016)Google Scholar
  28. 28.
    J. Wang, Chin. Opt. Lett. 15, 030005 (2017).ADSGoogle Scholar
  29. 29.
    K. Dholakia, and T. Čižmár, Nat. Photon. 5, 335 (2011).ADSGoogle Scholar
  30. 30.
    L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, Science 292, 912 (2001).ADSGoogle Scholar
  31. 31.
    M. Padgett, and R. Bowman, Nat. Photon. 5, 343 (2011).ADSGoogle Scholar
  32. 32.
    N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, Opt. Lett. 22, 52 (1997).ADSGoogle Scholar
  33. 33.
    J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, Nature 432, 165 (2004).ADSGoogle Scholar
  34. 34.
    M. R. Dennis, R. P. King, B. Jack, K. O’Holleran, and M. J. Padgett, Nat. Phys. 6, 118 (2010).Google Scholar
  35. 35.
    M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, Science 341, 537 (2013).ADSGoogle Scholar
  36. 36.
    D. Giovannini, J. Romero, V. Potoček, G. Ferenczi, F. Speirits, S. M. Barnett, D. Faccio, and M. J. Padgett, Science 347, 857 (2015). arXiv: 1411.3987.ADSGoogle Scholar
  37. 37.
    L. Fang, M. J. Padgett, and J. Wang, Laser Photon. Rev. 11, 1700183 (2017)ADSGoogle Scholar
  38. 38.
    S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, Opt. Express 14, 3792 (2006).ADSGoogle Scholar
  39. 39.
    N. M. Elias II, Astron. Astrophys. 492, 883 (2008).ADSGoogle Scholar
  40. 40.
    A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).ADSGoogle Scholar
  41. 41.
    J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, Science 329, 662 (2010).ADSGoogle Scholar
  42. 42.
    M. Okida, T. Omatsu, M. Itoh, and T. Yatagai, Opt. Express 15, 7616 (2007).ADSGoogle Scholar
  43. 43.
    A. J. Lee, C. Zhang, T. Omatsu, and H. M. Pask, Opt. Express 22, 5400 (2014).ADSGoogle Scholar
  44. 44.
    P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, Science 353, 464 (2016).ADSGoogle Scholar
  45. 45.
    M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, Opt. Commun. 96, 123 (1993).ADSGoogle Scholar
  46. 46.
    L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, J. Opt. 13, 064001 (2011).ADSGoogle Scholar
  47. 47.
    M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, Opt. Commun. 112, 321 (1994).ADSGoogle Scholar
  48. 48.
    S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. Hooft, Appl. Opt. 43, 688 (2004).ADSGoogle Scholar
  49. 49.
    N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, Opt. Lett. 17, 221 (1992).ADSGoogle Scholar
  50. 50.
    M. Mirhosseini, O. S. Magaña-Loaiza, C. Chen, B. Rodenburg, M. Malik, and R. W. Boyd, Opt. Express 21, 30196 (2013). arXiv: 1311.4811.ADSGoogle Scholar
  51. 51.
    L. Zhu, and J. Wang, Sci. Rep. 4, 7441 (2015).Google Scholar
  52. 52.
    J. Liu, and J. Wang, Sci. Rep. 5, 9959 (2015).ADSGoogle Scholar
  53. 53.
    C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, Laser Photon. Rev. 5, 81 (2011).ADSGoogle Scholar
  54. 54.
    A. Forbes, A. Dudley, and M. McLaren, Adv. Opt. Photon. 8, 200 (2016).Google Scholar
  55. 55.
    Y. Yan, J. Wang, L. Zhang, J. Y. Yang, I. M. Fazal, N. Ahmed, B. Shamee, A. E. Willner, K. Birnbaum, and S. Dolinar, Opt. Lett. 36, 4269 (2011).ADSGoogle Scholar
  56. 56.
    Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, Opt. Lett. 37, 3294 (2012).ADSGoogle Scholar
  57. 57.
    Y. Yan, Y. Yue, H. Huang, J. Y. Yang, M. R. Chitgarha, N. Ahmed, M. Tur, S. J. Dolinar, and A. E. Willner, Opt. Lett. 37, 3645 (2012).ADSGoogle Scholar
  58. 58.
    H. Xu, and L. Yang, Opt. Lett. 38, 1978 (2013).ADSGoogle Scholar
  59. 59.
    G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. S. J. Russell, Science 337, 446 (2012).ADSGoogle Scholar
  60. 60.
    S. Li, Q. Mo, X. Hu, C. Du, and J. Wang, Opt. Lett. 40, 4376 (2015).ADSGoogle Scholar
  61. 61.
    L. Fang, and J. Wang, Opt. Lett. 40, 4010 (2015).ADSGoogle Scholar
  62. 62.
    Y. F. Yu, Y. H. Fu, X. M. Zhang, A. Q. Liu, T. Bourouina, T. Mei, Z. X. Shen, and D. P. Tsai, Opt. Express 18, 21651 (2010).ADSGoogle Scholar
  63. 63.
    T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, and S. J. B. Yoo, Opt. Express 20, 9396 (2012).ADSGoogle Scholar
  64. 64.
    D. Zhang, X. Feng, and Y. Huang, Opt. Express 20, 26986 (2012).ADSGoogle Scholar
  65. 65.
    X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, Science 338, 363 (2012).ADSGoogle Scholar
  66. 66.
    B. Guan, R. P. Scott, C. Qin, N. K. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, and S. J. B. Yoo, Opt. Express 22, 145 (2014).ADSGoogle Scholar
  67. 67.
    M. J. Strain, X. Cai, J. Wang, J. Zhu, D. B. Phillips, L. Chen, M. Lopez-Garcia, J. L. O’Brien, M. G. Thompson, M. Sorel, and S. Yu, Nat. Commun. 5, 4856 (2014).ADSGoogle Scholar
  68. 68.
    S. Zheng, and J. Wang, Opt. Express 25, 18492 (2017).ADSGoogle Scholar
  69. 69.
    J. Du, and J. Wang, Opt. Lett. 42, 5054 (2017).ADSGoogle Scholar
  70. 70.
    J. Liu, S. Li, Y. Ding, S. Chen, C. Du, Q. Mo, T. Morioka, K. Yvind, L. K. Oxenløwe, S. Yu, X. Cai, and J. Wang, Opt. Express 26, 15471 (2018).ADSGoogle Scholar
  71. 71.
    N. Zhou, S. Zheng, X. Cao, S. Gao, S. Li, M. He, X. Cai, and J. Wang, Opt. Lett. 43, 3140 (2018).ADSGoogle Scholar
  72. 72.
    N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).ADSGoogle Scholar
  73. 73.
    Z. Zhao, J. Wang, S. Li, and A. E. Willner, Opt. Lett. 38, 932 (2013).ADSGoogle Scholar
  74. 74.
    G. Li, M. Kang, S. Chen, S. Zhang, E. Y. B. Pun, K. W. Cheah, and J. Li, Nano Lett. 13, 4148 (2013).ADSGoogle Scholar
  75. 75.
    Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, Nano Lett. 14, 1394 (2014).ADSGoogle Scholar
  76. 76.
    E. Karimi, S. A. Schulz, I. de Leon, H. Qassim, J. Upham, and R. W. Boyd, Light Sci. Appl. 3, e167 (2014)Google Scholar
  77. 77.
    J. Du, and J. Wang, Sci. Rep. 5, 9662 (2015).ADSGoogle Scholar
  78. 78.
    Y. Zhao, J. Du, J. Zhang, L. Shen, and J. Wang, Appl. Phys. Lett. 112, 171103 (2018).ADSGoogle Scholar
  79. 79.
    J. Du, and J. Wang, Opt. Express 26, 13183 (2018).ADSGoogle Scholar
  80. 80.
    N. Zhou, and J. Wang, Sci. Rep. 8, 8038 (2018).ADSGoogle Scholar
  81. 81.
    J. Wang, Chin. Opt. Lett. 16, 050006 (2018).Google Scholar
  82. 82.
    J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, Phys. Rev. Lett. 88, 257901 (2002).ADSGoogle Scholar
  83. 83.
    H. D. L. Pires, J. Woudenberg, and M. P. van Exter, Opt. Lett. 35, 889 (2010).ADSGoogle Scholar
  84. 84.
    W. Zhang, Q. Qi, J. Zhou, and L. Chen, Phys. Rev. Lett. 112, 153601 (2014).ADSGoogle Scholar
  85. 85.
    J. Xin, C. Gao, C. Li, and Z. Wang, Appl. Phys. B 108, 703 (2012).ADSGoogle Scholar
  86. 86.
    S. Zheng, and J. Wang, Sci. Rep. 7, 40781 (2017).ADSGoogle Scholar
  87. 87.
    P. Genevet, J. Lin, M. A. Kats, and F. Capasso, Nat. Commun. 3, 1278 (2012).ADSGoogle Scholar
  88. 88.
    A. Belmonte, and J. P. Torres, Opt. Lett. 38, 241 (2013).ADSGoogle Scholar
  89. 89.
    S. Li, and J. Wang, Sci. Rep. 5, 15406 (2015).ADSGoogle Scholar
  90. 90.
    T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, Light Sci. Appl. 4, e257 (2015)ADSGoogle Scholar
  91. 91.
    G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, Phys. Rev. Lett. 105, 153601 (2010).ADSGoogle Scholar
  92. 92.
    M. N. O’Sullivan, M. Mirhosseini, M. Malik, and R. W. Boyd, Opt. Express 20, 24444 (2012). arXiv: 1208.2891.ADSGoogle Scholar
  93. 93.
    A. Dudley, T. Mhlanga, M. Lavery, A. McDonald, F. S. Roux, M. Padgett, and A. Forbes, Opt. Express 21, 165 (2013).ADSGoogle Scholar
  94. 94.
    R. Fickler, R. Lapkiewicz, M. Huber, M. P. J. Lavery, M. J. Padgett, and A. Zeilinger, Nat. Commun. 5, 4502 (2014). arXiv: 1402.2423.ADSGoogle Scholar
  95. 95.
    M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, Nat. Commun. 4, 2781 (2013). arXiv: 1306.0849.ADSGoogle Scholar
  96. 96.
    M. Malik, M. Mirhosseini, M. P. J. Lavery, J. Leach, M. J. Padgett, and R. W. Boyd, Nat. Commun. 5, 3115 (2014). arXiv: 1306.0619.ADSGoogle Scholar
  97. 97.
    G. Milione, H. Huang, M. Lavery, A. Willner, R. R. Alfano, T. A. Nguyen, and M. J. Padgett, in Orbital-Angular-Momentum Mode (De)Multiplexer: A Single Optical Element for MIMO-based and Non-MIMO-Based Multimode Fiber Systems: Proceeding of OFC, 9–13 March 2014 (IEEE, San Francisco, 2014), paper M3K.6.Google Scholar
  98. 98.
    G. Labroille, B. Denolle, P. Jian, P. Genevaux, N. Treps, and J. F. Morizur, Opt. Express 22, 15599 (2014). arXiv: 1404.6455.ADSGoogle Scholar
  99. 99.
    A. E. Willner, and J. Wang, in Optical Communications Using Light Beams Carrying Orbital Angular Momentum: 2012 Conference on Lasers and Electro-Optics (CLEO), 6–11 May 2012 (IEEE, San Jose, 2012), paper JTu2K.1.Google Scholar
  100. 100.
    J. Wang, and A. E. Willner, in Using Orbital Angular Momentum Modes for Optical Transmission: Proceeding of OFC, 9–13 March 2014 (IEEE, San Francisco, 2014), paper W4J.5.Google Scholar
  101. 101.
    G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, Opt. Express 12, 5448 (2004).ADSGoogle Scholar
  102. 102.
    Y. Awaji, N. Wada, and Y. Toda, in Demonstration of Spatial Mode Division Multiplexing Using Laguerre-Gaussian Mode Beam in Telecom-wavelength: 23rd Annual Meeting of the IEEE Photonics Society, 7–11 November 2010, Denver, CO, USA (IEEE, Denver, 2010).Google Scholar
  103. 103.
    J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, B. Shamee, A. E. Willner, K. Birnbaum, J. Choi, B. Erkmen, S. Dolinar, and M. Tur, in Demonstration of 12.8-bit/s/Hz Spectral Efficiency Using 16–QAM Signals Over Multiple Orbital-Angular-Momentum Modes: 37th European Conference and Exposition on Optical Communications (OSA Technical, Geneva, 2011), paper We.10.P1.76.Google Scholar
  104. 104.
    J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, B. Shamee, A. E. Willner, K. Birnbaum, J. Choi, B. Erkmen, S. Dolinar, and M. Tur, in 25.6-bit/s/Hz Spectral Efficiency Using 16-QAM Signals Over Pol-Muxed Multiple Orbital-Angular-Momentum Modes: Proceeding of IEEE Photonic Society 24th Annual Meeting (IEEE, Arlington, 2011), paper WW2.Google Scholar
  105. 105.
    J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Nat. Photon. 6, 488 (2012).ADSGoogle Scholar
  106. 106.
    J. Wang, S. Li, C. Li, L. Zhu, C. Gui, D. Xie, Y. Qiu, Q. Yang, and S. Yu, in Ultra-high 230-bit/s/Hz Spectral Efficiency Using OFDM/ OQAM 64-QAM Signals Over Pol-Muxed 22 Orbital Angular Momentum (OAM) Modes: Proceedings of Optical Fiber Communication Conference (San Francisco, CA, USA 2014), paper W1H.4.Google Scholar
  107. 107.
    J. Wang, J. Liu, X. Lv, L. Zhu, D. Wang, S. Li, A. Wang, Y. Zhao, Y. Long, J. Du, X. Hu, N. Zhou, S. Chen, L. Fang, and F. Zhang, in Ultra-high 435-bit/s/Hz spectral efficiency using N-dimentional multiplexing and modulation link with pol-muxed 52 orbital angular momentum (OAM) modes carrying Nyquist 32-QAM signals: Conference: 2015 European Conference on Optical Communication, 2015 paper Th.2.5.4.Google Scholar
  108. 108.
    I. M. Fazal, N. Ahmed, J. Wang, J. Y. Yang, Y. Yan, B. Shamee, H. Huang, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Opt. Lett. 37, 4753 (2012).ADSGoogle Scholar
  109. 109.
    H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, Opt. Lett. 39, 197 (2014).ADSGoogle Scholar
  110. 110.
    J. Wang, S. Li, M. Luo, J. Liu, L. Zhu, C. Li, D. Xie, Q. Yang, S. Yu, J. Sun, X. Zhang, W. Shieh, and A. E. Willner, in N-dimentional Multiplexing Link With 1.036-Pbit/s Transmission Capacity and 112.6-bit/s/Hz Spectral Efficiency Using OFDM-8QAM Signals Over 368 WDM Pol-muxed 26 OAM Modes: The European Conference on Optical Communication (ECOC) (IEEE, Cannes, 2014), paper Mo.4.5.1.Google Scholar
  111. 111.
    Y. Fang, J. Yu, J. Zhang, N. Chi, J. Xiao, and G. K. Chang, Opt. Lett. 39, 4168 (2014).ADSGoogle Scholar
  112. 112.
    M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, New J. Phys. 16, 113028 (2014).Google Scholar
  113. 113.
    J. Liu, and J. Wang, Opt. Express 24, 4258 (2016).ADSGoogle Scholar
  114. 114.
    M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, Proc. Natl. Acad. Sci. 113, 13648 (2016). arXiv: 1606.01811.ADSGoogle Scholar
  115. 115.
    S. Li, and J. Wang, Opt. Express 25, 21537 (2017).ADSGoogle Scholar
  116. 116.
    S. Ramachandran, P. Kristensen, and M. F. Yan, Opt. Lett. 34, 2525 (2009).ADSGoogle Scholar
  117. 117.
    N. Bozinovic, P. Kristensen, and S. Ramachandran, in Long-range Fiber-transmission of Photons with Orbital Angular Momentum: CLEO: 2011 Laser Applications to Photonic Applications (OSA Technical, Baltimore, 2011), paper CTuB1.Google Scholar
  118. 118.
    N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, A. E. Willner, and S. Ramachandran, in Orbital Angular Momentum (OAM) Based Mode Division Multiplexing (MDM) Over a km-length Fiber: European Conference and Exhibition on Optical Communication (OSA Technical Digest, Amsterdam, 2012), paper Th.3.C.6.Google Scholar
  119. 119.
    Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. X. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, IEEE Photon. J. 4, 535 (2012).ADSGoogle Scholar
  120. 120.
    N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, Science 340, 1545 (2013).ADSGoogle Scholar
  121. 121.
    P. Gregg, P. Kristensen, S. E. Golowich, J. Ø. Olsen, P. Steinvurzel, and S. Ramachandran, in Stable Transmission of 12 OAM States in Air-core Fiber: Proceeding of CLEO (IEEE, San Jose, 2013), paper CTu2K.2.Google Scholar
  122. 122.
    C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, Opt. Express 22, 26117 (2014).ADSGoogle Scholar
  123. 123.
    P. Gregg, P. Kristensen, and S. Ramachandran, Optica 2, 267 (2015).Google Scholar
  124. 124.
    B. Ung, P. Vaity, L. Wang, Y. Messaddeq, L. A. Rusch, and S. LaRochelle, Opt. Express 22, 18044 (2014).ADSGoogle Scholar
  125. 125.
    S. Li, and J. Wang, Opt. Express 23, 18736 (2015).ADSGoogle Scholar
  126. 126.
    S. Li, and J. Wang, IEEE Photon. J. 5, 7101007 (2013)ADSGoogle Scholar
  127. 127.
    S. Li, and J. Wang, Sci. Rep. 4, 3853 (2015).Google Scholar
  128. 128.
    S. Chen, and J. Wang, IEEE J. Quantum Electron. 53, 7200308 (2017)Google Scholar
  129. 129.
    S. Chen, and J. Wang, Sci. Rep. 7, 3990 (2017).ADSGoogle Scholar
  130. 130.
    Y. Awaji, N. Wada, Y. Toda, and T. Hayashi, in Propagation of Laguerre-Gaussian Mode Light Through Multi-Core Fiber at Telecom Wavelength: CLEO: 2011-Laser Applications to Photonic Applications (OSA Technical, Baltimore, 2011), paper CThGG2.Google Scholar
  131. 131.
    H. Huang, G. Milione, M. P. J. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. A. Nguyen, D. A. Nolan, M. J. Li, M. Tur, R. R. Alfano, and A. E. Willner, Sci. Rep. 5, 14931 (2015).ADSGoogle Scholar
  132. 132.
    A. Wang, L. Zhu, J. Liu, C. Du, Q. Mo, and J. Wang, Opt. Express 23, 29457 (2015).ADSGoogle Scholar
  133. 133.
    J. Liu, S. Li, J. Du, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, Opt. Lett. 41, 1969 (2016).ADSGoogle Scholar
  134. 134.
    A. Wang, L. Zhu, S. Chen, C. Du, Q. Mo, and J. Wang, Opt. Express 24, 11716 (2016).ADSGoogle Scholar
  135. 135.
    S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Q. Mo, and J. Wang, Sci. Rep. 6, 38181 (2016).ADSGoogle Scholar
  136. 136.
    L. Zhu, C. Yang, D. Xie, and J. Wang, Opt. Lett. 42, 763 (2017).ADSGoogle Scholar
  137. 137.
    L. Zhu, J. Liu, Q. Mo, C. Du, and J. Wang, Opt. Express 24, 16934 (2016).ADSGoogle Scholar
  138. 138.
    L. Zhu, A. Wang, S. Chen, J. Liu, Q. Mo, C. Du, and J. Wang, Opt. Express 25, 25637 (2017).ADSGoogle Scholar
  139. 139.
    A. Wang, L. Zhu, L. Wang, J. Ai, S. Chen, and J. Wang, Opt. Express 26, 10038 (2018).ADSGoogle Scholar
  140. 140.
    L. Zhu, A. Wang, S. Chen, J. Liu, and J. Wang, Opt. Lett. 43, 1894 (2018).ADSGoogle Scholar
  141. 141.
    Y. Jung, Q. Kang, H. Zhou, R. Zhang, S. Chen, H. Wang, Y. Yang, X. Jin, F. P. Payne, S. Alam, and D. J. Richardson, J. Lightwave Technol. 35, 1363 (2017).ADSGoogle Scholar
  142. 142.
    G. Zhu, Z. Hu, X. Wu, C. Du, W. Luo, Y. Chen, X. Cai, J. Liu, J. Zhu, and S. Yu, Opt. Express 26, 594 (2018).ADSGoogle Scholar
  143. 143.
    L. Zhu, G. Zhu, A. Wang, L. Wang, J. Ai, S. Chen, C. Du, J. Liu, S. Yu, and J. Wang, Opt. Lett. 43, 1890 (2018).ADSGoogle Scholar
  144. 144.
    J. Zhang, G. Zhu, J. Liu, X. Wu, J. Zhu, C. Du, W. Luo, Y. Chen, and S. Yu, Opt. Express 26, 4243 (2018). arXiv: 1711.04646.ADSGoogle Scholar
  145. 145.
    J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, A. E. Willner, S. J. Dolinar, and M. Tur, Experimental Demonstration of 100-Gbit/s DQPSK Data Exchange Between Orbital-angular-momentum Modes: Optical Fiber Communication Conference (OSA Technical, Los Angeles, 2012), paper OW1I.5.Google Scholar
  146. 146.
    J. Liu, L. Zhu, A. Wang, S. Li, S. Chen, C. Du, Q. Mo, and J. Wang, Opt. Lett. 41, 3896 (2016).ADSGoogle Scholar
  147. 147.
    Y. Yue, H. Huang, N. Ahmed, Y. Yan, Y. Ren, G. Xie, D. Rogawski, M. Tur, and A. E. Willner, Opt. Lett. 38, 5118 (2013).ADSGoogle Scholar
  148. 148.
    J. Liu, and J. Wang, Sci. Rep. 6, 37331 (2016).ADSGoogle Scholar
  149. 149.
    Y. Yan, Y. Yue, H. Huang, Y. Ren, N. Ahmed, M. Tur, S. Dolinar, and A. Willner, Opt. Lett. 38, 3930 (2013).ADSGoogle Scholar
  150. 150.
    S. Li, J. Wang, X. Zhang, L. Zhu, C. Li and Q. Yang, in Demonstration of Simultaneous 1-to-34 Multicasting of OFDM/OQAM 64-QAM Signal from Single Gaussian Mode to Multiple Orbital Angular Momentum (OAM) Modes: Asia Communications and Photonics Conference 2013 Postdeadline (OSA Technical, Beijing, 2013), paper AF2E.5.Google Scholar
  151. 151.
    S. Li, J. Liu, C. Li, C. Gui, L. Zhu, Q. Yang and J. Wang, in Powercontrollable Multicasting of a Single Gaussian Mode to Multiple Orbital Angular Momentum (OAM) Modes: Proceeding of CLEO (OSA Technical, San Jose, 2014), paper SM3J.5.Google Scholar
  152. 152.
    L. Zhu, and J. Wang, Opt. Express 23, 26221 (2015).ADSGoogle Scholar
  153. 153.
    S. Li, and J. Wang, Sci. Rep. 5, 9677 (2015).ADSGoogle Scholar
  154. 154.
    H. Huang, Y. Yue, Y. Yan, N. Ahmed, Y. Ren, M. Tur, and A. E. Willner, Opt. Lett. 38, 5142 (2013).ADSGoogle Scholar
  155. 155.
    H. Huang, Y. Ren, G. Xie, Y. Yan, Y. Yue, N. Ahmed, M. P. J. Lavery, M. J. Padgett, S. Dolinar, M. Tur, and A. E. Willner, Opt. Lett. 39, 1689 (2014).ADSGoogle Scholar
  156. 156.
    Y. Yue, L. Zhang, Y. Yan, N. Ahmed, J. Y. Yang, H. Huang, Y. Ren, S. Dolinar, M. Tur, and A. E. Willner, Opt. Lett. 37, 1889 (2012).ADSGoogle Scholar
  157. 157.
    Z. Y. Zhou, D. S. Ding, Y. K. Jiang, Y. Li, S. Shi, X. S. Wang, and B. S. Shi, Opt. Express 22, 20298 (2014). arXiv: 1405.1878.ADSGoogle Scholar
  158. 158.
    C. Paterson, Phys. Rev. Lett. 94, 153901 (2005).ADSGoogle Scholar
  159. 159.
    J. A. Anguita, M. A. Neifeld, and B. V. Vasic, Appl. Opt. 47, 2414 (2008).ADSGoogle Scholar
  160. 160.
    B. Rodenburg, M. P. J. Lavery, M. Malik, M. N. O’Sullivan, M. Mirhosseini, D. J. Robertson, M. Padgett, and R. W. Boyd, Opt. Lett. 37, 3735 (2012). arXiv: 1205.6518.ADSGoogle Scholar
  161. 161.
    S. M. Zhao, J. Leach, L. Y. Gong, J. Ding, and B. Y. Zheng, Opt. Express 20, 452 (2012).ADSGoogle Scholar
  162. 162.
    Y. Ren, G. Xie, H. Huang, C. Bao, Y. Yan, N. Ahmed, M. P. J. Lavery, B. I. Erkmen, S. Dolinar, M. Tur, M. A. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, and A. E. Willner, Opt. Lett. 39, 2845 (2014).ADSGoogle Scholar
  163. 163.
    S. Li, and J. Wang, Opt. Lett. 41, 1482 (2016).ADSGoogle Scholar
  164. 164.
    S. Li, S. Chen, C. Gao, A. E. Willner, and J. Wang, Opt. Commun. 408, 68 (2018).ADSGoogle Scholar
  165. 165.
    I. B. Djordjevic, and M. Arabaci, Opt. Express 18, 24722 (2010).ADSGoogle Scholar
  166. 166.
    I. B. Djordjevic, Opt. Express 19, 14277 (2011).ADSGoogle Scholar
  167. 167.
    J. Baghdady, K. Miller, K. Morgan, M. Byrd, S. Osler, R. Ragusa, W. Li, B. M. Cochenour, and E. G. Johnson, Opt. Express 24, 9794 (2016).ADSGoogle Scholar
  168. 168.
    Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, Sci. Rep. 6, 33306 (2016). arXiv: 1604.06865.ADSGoogle Scholar
  169. 169.
    Y. Zhao, J. Xu, A. Wang, W. Lv, L. Zhu, S. Li, and J. Wang, Opt. Express 25, 28743 (2017).ADSGoogle Scholar
  170. 170.
    Y. Zhao, A. Wang, L. Zhu, W. Lv, J. Xu, S. Li, and J. Wang, Opt. Lett. 42, 4699 (2017).ADSGoogle Scholar
  171. 171.
    A. Wang, L. Zhu, Y. Zhao, S. Li, W. Lv, J. Xu, and J. Wang, Opt. Express 26, 8669 (2018).ADSGoogle Scholar
  172. 172.
    Y. Zhao, C. Cai, J. Zhang, X. Cao, L. Wang, S. Li, and J. Wang, Opt. Express 26, 16102 (2018).ADSGoogle Scholar
  173. 173.
    M. Uchida, and A. Tonomura, Nature 464, 737 (2010).ADSGoogle Scholar
  174. 174.
    J. Verbeeck, H. Tian, and P. Schattschneider, Nature 467, 301 (2010).ADSGoogle Scholar
  175. 175.
    B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, Science 331, 192 (2011).ADSGoogle Scholar
  176. 176.
    S. Sasaki, and I. McNulty, Phys. Rev. Lett. 100, 124801 (2008).ADSGoogle Scholar
  177. 177.
    L. Marrucci, C. Manzo, and D. Paparo, Phys. Rev. Lett. 96, 163905 (2006). arXiv: 0712.0099.ADSGoogle Scholar
  178. 178.
    F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, New J. Phys. 14, 033001 (2012). arXiv: 1107.2348.ADSGoogle Scholar
  179. 179.
    B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, Phys. Rev. Lett. 99, 087701 (2007). arXiv: 0705.1208.ADSGoogle Scholar
  180. 180.
    G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, Opt. Commun. 127, 183 (1996).ADSGoogle Scholar
  181. 181.
    Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, Nat. Commun. 5, 4876 (2014).ADSGoogle Scholar
  182. 182.
    L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, in Experimental Demonstration of Basic Functionalities for 0.1-THz Orbital Angular Momentum (OAM) Communications: Proceeding of OFC (IEEE, San Francisco, 2014), paper M3K.7.Google Scholar
  183. 183.
    J. Geng, Adv. Opt. Photon. 3, 128 (2011).Google Scholar
  184. 184.
    H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litch-initser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, J. Opt. 19, 013001 (2017). arXiv: 1612.06474.ADSGoogle Scholar
  185. 185.
    R. Won, Nat. Photon. 11, 619 (2017).ADSGoogle Scholar
  186. 186.
    J. Du, and J. Wang, Opt. Lett. 40, 4827 (2015).ADSGoogle Scholar
  187. 187.
    L. Zhu, and J. Wang, Opt. Lett. 40, 5463 (2015).ADSGoogle Scholar
  188. 188.
    S. Chen, S. Li, Y. Zhao, J. Liu, L. Zhu, A. Wang, J. Du, L. Shen, and J. Wang, Opt. Lett. 41, 4680 (2016).ADSGoogle Scholar
  189. 189.
    S. Li, and J. Wang, Sci. Rep. 7, 43233 (2017).ADSGoogle Scholar
  190. 190.
    Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).Google Scholar
  191. 191.
    G. Milione, M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, and A. E. Willner, Opt. Lett. 40, 1980 (2015). arXiv: 1412.2717.ADSGoogle Scholar
  192. 192.
    Y. Zhao, and J. Wang, Opt. Lett. 40, 4843 (2015).ADSGoogle Scholar
  193. 193.
    J. Liu, S. M. Li, L. Zhu, A. D. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Y. Yu, X. L. Cai, and J. Wang, Light Sci. Appl. 7, 17148 (2017).Google Scholar
  194. 194.
    L. Fang, and J. Wang, Opt. Express 26, 15124 (2018).ADSGoogle Scholar
  195. 195.
    E. Ip, G. Milione, M. J. Li, N. Cvijetic, K. Kanonakis, J. Stone, G. Peng, X. Prieto, C. Montero, V. Moreno, and J. Liñares, Opt. Express 23, 17120 (2015).ADSGoogle Scholar
  196. 196.
    L. Wang, J. Ai, L. Zhu, A. Wang, S. Fu, C. Du, Q. Mo, and J. Wang, Opt. Express 25, 22991 (2017).ADSGoogle Scholar
  197. 197.
    S. Chen, and J. Wang, Opt. Express 26, 18773 (2018).ADSGoogle Scholar
  198. 198.
    S. Chen, and J. Wang, Opt. Lett. 43, 3718 (2018).ADSGoogle Scholar
  199. 199.
    J. Wang, M. J. Padgett, S. Ramachandran, M. P. J. Lavery, H. Huang, Y. Yue, Y. Yan, N. Bozinovic, S. E. Golowich, and A. E. Willner, in Multimode Communications Using Orbital Angular Momentum, in Optical Fiber Telecommunications VI B, 6th ed., edited by I. P. Kaminow, T. Li, and A. E. Willner (Academic Press, San Diego, 2013), pp. 569–615.Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations