Advertisement

Dark matter direct search sensitivity of the PandaX-4T experiment

  • HongGuang Zhang
  • Abdusalam Abdukerim
  • Wei Chen
  • Xun Chen
  • YunHua Chen
  • XiangYi Cui
  • BinBin Dong
  • DeQing Fang
  • ChangBo Fu
  • Karl Giboni
  • Franco Giuliani
  • LinHui Gu
  • XuYuan Guo
  • ZhiFan Guo
  • Ke Han
  • ChangDa He
  • ShengMing He
  • Di Huang
  • XingTao Huang
  • Zhou Huang
  • Peng Ji
  • XiangDong JiEmail author
  • YongLin Ju
  • ShaoLi Li
  • Yao Li
  • Heng Lin
  • HuaXuan Liu
  • JiangLai Liu
  • YuGang Ma
  • YaJun Mao
  • KaiXiang Ni
  • JinHua Ning
  • XiangXiang Ren
  • Fang Shi
  • AnDi Tan
  • AnQing Wang
  • Cheng Wang
  • HongWei Wang
  • Meng Wang
  • QiuHong Wang
  • SiGuang Wang
  • XiuLi Wang
  • XuMing Wang
  • Zhou Wang
  • MengMeng Wu
  • ShiYong Wu
  • JingKai Xia
  • MengJiao Xiao
  • PengWei Xie
  • BinBin Yan
  • JiJun Yang
  • Yong Yang
  • ChunXu Yu
  • JuMin Yuan
  • JianFeng Yue
  • Dan Zhang
  • Tao Zhang
  • Li Zhao
  • QiBin Zheng
  • JiFang Zhou
  • Ning ZhouEmail author
  • XiaoPeng Zhou
Article

Abstract

The PandaX-4T experiment, a 4-ton scale dark matter direct detection experiment, is being planned at the China Jinping Un- derground Laboratory. In this paper we present a simulation study of the expected background in this experiment. In a 2.8-ton fiducial mass and the signal region between 1–10 keV electron equivalent energy, the total electron recoil background is found to be 4:9 × 10−5 kg−1d−1keV−1. The nuclear recoil background in the same region is 2:8 × 10−7 kg−1d−1keV−1. With an exposure of 5.6 ton-years, the sensitivity of PandaX-4T could reach a minimum spin-independent dark matter-nucleon cross section of 6 × 10−48 cm2 at a dark matter mass of 40 GeV/c2.

Keywords

dark matter WIMPs direct detection xenon 

References

  1. 1.
    S. M. Faber, and J. S. Gallagher, Annu. Rev. Astron. Astrophys. 17, 135 (1979).ADSCrossRefGoogle Scholar
  2. 2.
    G. R. Blumenthal, S. M. Faber, J. R. Primack, and M. J. Rees, Nature 311, 517 (1984).ADSCrossRefGoogle Scholar
  3. 3.
    P. A. R. Ade, et al. (Planck Collaboration), Astron. Astrophys. 594, A13 (2016), arXiv: 1502.01589.CrossRefGoogle Scholar
  4. 4.
    L. M. Widrow, B. Pym, and J. Dubinski, Astrophys. J. 679, 1239 (2008), arXiv: 0801.3414.ADSCrossRefGoogle Scholar
  5. 5.
    G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    P. Cushman, C. Galbiati, D. N. McKinsey, H. Robertson, T. M. P. Tait, D. Bauer, A. Borgland, B. Cabrera, F. Calaprice, J. Cooley, T. Empl, R. Essig, E. Figueroa-Feliciano, R. Gaitskell, S. Golwala, J. Hall, R. Hill, A. Hime, E. Hoppe, L. Hsu, E. Hungerford, R. Jacobsen, M. Kelsey, R. F. Lang, W. H. Lippincott, B. Loer, S. Luitz, V. Mandic, J. Mardon, J. Maricic, R. Maruyama, R. Mahapatra, H. Nelson, J. Orrell, K. Palladino, E. Pantic, R. Partridge, A. Ryd, T. Saab, B. Sadoulet, R. Schnee, W. Shepherd, A. Sonnenschein, P. Sorensen, M. Szydagis, T. Volansky, M. Witherell, D. Wright, and K. Zurek,, arXiv: 1310.8327.Google Scholar
  7. 7.
    J. Liu, X. Chen, and X. Ji, Nat. Phys. 13, 212 (2017), arXiv: 1709.00688.CrossRefGoogle Scholar
  8. 8.
    D.S. Akerib, et al. (LUX Collaboration), Phys. Rev. Lett. 118, 021303 (2017), arXiv: 1608.07648.ADSCrossRefGoogle Scholar
  9. 9.
    E. Aprile, et al. (XENON Collaboration), Phys. Rev. Lett. 119, 181301 (2017), arXiv: 1705.06655.ADSCrossRefGoogle Scholar
  10. 10.
    A. D. Tan, et al. (PandaX-II Collaboration), Phys. Rev. Lett. 117, 121303 (2016), arXiv: 1607.07400.ADSCrossRefGoogle Scholar
  11. 11.
    X. Y. Cui, et al. (PandaX-II Collaboration), Phys. Rev. Lett. 119, 181302 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    E. Aprile, et al. (XENON1T Collaboration), J. Cosmol. Astropart. Phys. 2016, 027 (2016), arXiv: 1512.07501.CrossRefGoogle Scholar
  13. 13.
    S. Agostinelli, et al. (GEANT4 Collaboration), Nucl. Instrum. Meth. A 506, 250 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    X. Du, K. Bailey, Z. T. Lu, P. Mueller, T. P. O’Connor, and L. Young, Rev. Sci. Instruments 75, 3224 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    M. Selvi, in Low radioactivity techniques 2013 (LRT 2013): Proceedings of the IV InternationalWorkshop in Low Radioactivity Techniques, vol. 1549 (AIP Publishing, 2013) pp. 213–218.Google Scholar
  16. 16.
    O. A. Ponkratenko, V. I. Tretyak, and Y. G. Zdesenko, Phys. Atom. Nuclei 63, 1282 (2000).ADSCrossRefGoogle Scholar
  17. 17.
    J. Kotila, and F. Iachello, Phys. Rev. C 85, 034316 (2012), arXiv: 1209.5722.ADSCrossRefGoogle Scholar
  18. 18.
    X. Chen, C. B. Fu, J. Galan, K. Giboni, F. Giuliani, L. H. Gu, K. Han, X. D. Ji, H. Lin, J. L. Liu, K. X. Ni, H. Kusano, X. X. Ren, S. B. Wang, Y. Yang, D. Zhang, T. Zhang, L. Zhao, X. M. Sun, S. Y. Hu, S. Y. Jian, X. L. Li, X. M. Li, H. Liang, H. Q. Zhang, M. R. Zhao, J. Zhou, Y. J. Mao, H. Qiao, S. G. Wang, Y. Yuan, M. Wang, A. N. Khan, N. Raper, J. Tang, W. Wang, J. N. Dong, C. Q. Feng, C. Li, J. B. Liu, S. B. Liu, X. L. Wang, D. Y. Zhu, J. F. Castel, S. Cebrián, T. Dafni, J. G. Garza, I. G. Irastorza, F. J. Iguaz, G. Luzón, H. Mirallas, S. Aune, E. Berthoumieux, Y. Bedfer, D. Calvet, N. d’Hose, A. Delbart, M. Diakaki, E. Ferrer-Ribas, A. Ferrero, F. Kunne, D. Neyret, T. Papaevangelou, F. Sabatié, M. Vanderbroucke, A. D. Tan, W. Haxton, Y. Mei, C. Kobdaj, and Y. P. Yan, Sci. China-Phys. Mech. Astron. 60, 061011 (2017), arXiv: 1610.08883.ADSCrossRefGoogle Scholar
  19. 19.
    W. Wlison, SOURCES-4A, Technical Report LA-13639-MS (Los Almos, 1999).Google Scholar
  20. 20.
    S. Shaw, Dark Matter Searches with the LUX and LZ Experiments, Dissertation for the Doctoral Degree (University College London, London, 2016).Google Scholar
  21. 21.
    J. Lindhard, V. Nielsen, M. Scharff, and P. V. Thomsen, Mat. Fys. Medd. Dan. Vid. Selsk. 33, 10 (1963).Google Scholar
  22. 22.
    D. Akimov, et al. (COHERENT Collaboration), Science 357, 1123 (2017).ADSCrossRefGoogle Scholar
  23. 23.
    A. L. Read, J. Phys. G-Nucl. Part. Phys. 28, 2693 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    D. S. Akerib, et al. (LUX Collaboration), Phys. Rev. Lett. 116, 161302 (2016), arXiv: 1602.03489.ADSCrossRefGoogle Scholar
  25. 25.
    E. Aprile, et al. (XENON100 Collaboration), Phys. Rev. D 94, 122001 (2016), arXiv: 1609.06154.ADSCrossRefGoogle Scholar
  26. 26.
    C. Fu, et al. (PandaX Collaboration), Phys. Rev. Lett. 118, 071301 (2017), arXiv: 1611.06553.ADSCrossRefGoogle Scholar
  27. 27.
    A. M. Sirunyan, et al. (CMS Collaboration), Phys. Rev. D 97, 092005 (2018), arXiv: 1712.02345.ADSCrossRefGoogle Scholar
  28. 28.
    M. Aaboud, et al. (ATLAS Collaboration), J. High Energ. Phys. 2018, 126 (2018).CrossRefGoogle Scholar
  29. 29.
    C. Amole, et al. (PICO Collaboration), Phys. Rev. D 93, 061101 (2016), arXiv: 1601.03729.ADSCrossRefGoogle Scholar
  30. 30.
    C. Amole, et al. (PICO Collaboration), Phys. Rev. D 93, 052014 (2016), arXiv: 1510.07754.ADSCrossRefGoogle Scholar
  31. 31.
    M. G. Aartsen, et al. (IceCube Collaboration), J. Cosmol. Astropart. Phys. 2016, 022 (2016), arXiv: 1601.00653.CrossRefGoogle Scholar
  32. 32.
    K. Choi, et al. (Super-Kamiokande Collaboration), Phys. Rev. Lett. 114, 141301 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • HongGuang Zhang
    • 1
  • Abdusalam Abdukerim
    • 2
  • Wei Chen
    • 1
  • Xun Chen
    • 1
  • YunHua Chen
    • 3
  • XiangYi Cui
    • 1
  • BinBin Dong
    • 1
  • DeQing Fang
    • 4
  • ChangBo Fu
    • 1
  • Karl Giboni
    • 1
  • Franco Giuliani
    • 1
  • LinHui Gu
    • 1
  • XuYuan Guo
    • 3
  • ZhiFan Guo
    • 5
  • Ke Han
    • 1
  • ChangDa He
    • 1
  • ShengMing He
    • 3
  • Di Huang
    • 1
  • XingTao Huang
    • 6
  • Zhou Huang
    • 1
  • Peng Ji
    • 7
  • XiangDong Ji
    • 1
    • 8
    Email author
  • YongLin Ju
    • 5
  • ShaoLi Li
    • 1
  • Yao Li
    • 1
  • Heng Lin
    • 1
  • HuaXuan Liu
    • 5
  • JiangLai Liu
    • 1
    • 8
  • YuGang Ma
    • 4
  • YaJun Mao
    • 9
  • KaiXiang Ni
    • 1
  • JinHua Ning
    • 3
  • XiangXiang Ren
    • 1
  • Fang Shi
    • 1
  • AnDi Tan
    • 10
  • AnQing Wang
    • 6
  • Cheng Wang
    • 5
  • HongWei Wang
    • 4
  • Meng Wang
    • 6
  • QiuHong Wang
    • 4
  • SiGuang Wang
    • 9
  • XiuLi Wang
    • 5
  • XuMing Wang
    • 1
  • Zhou Wang
    • 5
  • MengMeng Wu
    • 7
  • ShiYong Wu
    • 3
  • JingKai Xia
    • 1
  • MengJiao Xiao
    • 10
    • 11
  • PengWei Xie
    • 8
  • BinBin Yan
    • 6
  • JiJun Yang
    • 1
  • Yong Yang
    • 1
  • ChunXu Yu
    • 7
  • JuMin Yuan
    • 6
  • JianFeng Yue
    • 3
  • Dan Zhang
    • 10
  • Tao Zhang
    • 1
  • Li Zhao
    • 1
  • QiBin Zheng
    • 12
  • JiFang Zhou
    • 3
  • Ning Zhou
    • 1
    Email author
  • XiaoPeng Zhou
    • 9
  1. 1.Shanghai Key Laboratory for Particle Physics and Cosmology, Institute of Nuclear and Particle Physics (INPAC) and School of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.School of Physics and TechnologyXinjiang UniversityUrumqiChina
  3. 3.Yalong River Hydropower Development Company, Ltd.ChengduChina
  4. 4.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  5. 5.School of Mechanical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  6. 6.School of Physics and Key Laboratory of Particle Physics and Particle Irradiation (MOE)Shandong UniversityJinanChina
  7. 7.School of PhysicsNankai UniversityTianjinChina
  8. 8.Tsung-Dao Lee InstituteShanghaiChina
  9. 9.School of PhysicsPeking UniversityBeijingChina
  10. 10.Department of PhysicsUniversity of MarylandCollege ParkUSA
  11. 11.Center of High Energy PhysicsPeking UniversityBeijingChina
  12. 12.School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina

Personalised recommendations