Quasi-degenerate dark matter for DAMPE excess and 3.5 keV line

  • Pei-Hong GuEmail author


We propose a quasi-degenerate dark matter scenario to simultaneously explain the 1.4 TeV peak in the high-energy cosmic-ray electron-positron spectrum reported by the DAMPE collaboration very recently and the 3.5 keV X-ray line observed in galaxies clusters and from the Galactic centre and confirmed by the Chandra and NuSTAR satellites. We consider a dark SU(2)' × U(1)' gauge symmetry under which the dark matter is a Dirac fermion doublet composed of two SU(2)' doublets with non-trivial U(1)' charges. At the one-loop level the two dark fermion components can have a mass split as a result of the dark gauge symmetry breaking. Through the exchange of a mediator scalar doublet the two quasi-degenerate dark fermions can mostly annihilate into the electron-positron pairs at the tree level for explaining the 1.4 TeV positron anomaly, meanwhile, the heavy dark fermion can very slowly decay into the light dark fermion with a photon at the one-loop level for explaining the 3.5 keV X-ray line. Our dark fermions can be also verified in the direct detection experiments.


dark matter DAMPE excess 3.5 keV line 


  1. 1.
    G. Ambrosi, et al. (DAMPE Collaboration), Nature 552, 63 (2017), arXiv: 1711.10981.Google Scholar
  2. 2.
    Y. Z. Fan,W. C. Huang, M. Spinrath, Y. L. S. Tsai, and Q. Yuan, arXiv: 1711.10995.Google Scholar
  3. 3.
    P. H. Gu, and X. G. He, arXiv: 1711.11000.Google Scholar
  4. 4.
    G. H. Duan, L. Feng, F.Wang, L.Wu, J. M. Yang, and R. Zheng, arXiv: 1711.11012.Google Scholar
  5. 5.
    Q. Yuan, L. Feng, P.-F. Yin, Y.-Z. Fan, X.-J. Bi, M.-Y. Cui, T.-K. Dong, Y.-Q. Guo, K. Fang, H.-B. Hu, X. Huang, S.-J. Lei, X. Li, S.-J. Lin, H. Liu, P.-X. Ma, W.-X. Peng, R. Qiao, Z.-Q. Shen, M. Su, Y.-F. Wei, Z.-L. Xu, C. Yue, J.-J. Zang, C. Zhang, X. Zhang, Y.-P. Zhang, Y.-J. Zhang, and Y.-L. Zhang, arXiv: 1711.10989.Google Scholar
  6. 6.
    K. Fang, X. J. Bi, and P. F. Yin, arXiv: 1711.10996.Google Scholar
  7. 7.
    L. Zu, C. Zhang, L. Feng, Q. Yuan, and Y. Z. Fan, arXiv: 1711.11052.Google Scholar
  8. 8.
    Y. L. Tang, L. Wu, M. Zhang, and R. Zheng, arXiv: 1711.11058.Google Scholar
  9. 9.
    W. Chao, and Q. Yuan, arXiv: 1711.11182.Google Scholar
  10. 10.
    P. H. Gu, arXiv: 1711.11333.Google Scholar
  11. 11.
    P. Athron, C. Balazs, A. Fowlie, and Y. Zhang, arXiv: 1711.11376.Google Scholar
  12. 12.
    J. Cao, L. Feng, X. Guo, L. Shang, F. Wang, and P. Wu, arXiv: 1711.11452.Google Scholar
  13. 13.
    G. H. Duan, X. G. He, L. Wu, and J. M. Yang, arXiv: 1711.11563.Google Scholar
  14. 14.
    X. Liu, and Z. Liu, arXiv: 1711.11579.Google Scholar
  15. 15.
    X. J. Huang, Y. L. Wu, W. H. Zhang, and Y. F. Zhou, arXiv: 1712.00005.Google Scholar
  16. 16.
    I. Cholis, T. Karwal, and M. Kamionkowski, arXiv: 1712.00011.Google Scholar
  17. 17.
    W. Chao, H. K. Guo, H. L. Li, and J. Shu, arXiv: 1712.00037.Google Scholar
  18. 18.
    Y. Gao, and Y. Z. Ma, arXiv: 1712.00370.Google Scholar
  19. 19.
    J. S. Niu, T. Li, R. Ding, B. Zhu, H.-F. Xue, and Y. Wang, arXiv: 1712.00372.Google Scholar
  20. 20.
    E. Bulbul, M. Markevitch, A. Foster, R. K. Smith, M. Loewenstein, and S. W. Randall, Astrophys. J. 789, 13 (2014), arXiv: 1402.2301.ADSCrossRefGoogle Scholar
  21. 21.
    A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi, and J. Franse, Phys. Rev. Lett. 113, 251301 (2014), arXiv: 1402.4119.ADSCrossRefGoogle Scholar
  22. 22.
    N. Cappelluti, E. Bulbul, A. Foster, P. Natarajan, M. C. Urry, M. W. Bautz, F. Civano, E. Miller, and R. K. Smith, arXiv: 1701.07932.Google Scholar
  23. 23.
    D. Malyshev, A. Neronov, and D. Eckert, Phys. Rev. D 90, 103506 (2014), arXiv: 1408.3531.ADSCrossRefGoogle Scholar
  24. 24.
    P. B. Pal, and L. Wolfenstein, Phys. Rev. D 25, 766 (1982).ADSCrossRefGoogle Scholar
  25. 25.
    P. H. Gu, Phys. Dark Universe 2, 35 (2013), arXiv: 1301.4368.ADSCrossRefGoogle Scholar
  26. 26.
    H. Ishida, K. S. Jeong, and F. Takahashi, Phys. Lett. B 732, 196 (2014), arXiv: 1402.5837.ADSCrossRefGoogle Scholar
  27. 27.
    D. P. Finkbeiner, and N. Weiner, Phys. Rev. D 94, 083002 (2016), arXiv: 1402.6671.ADSCrossRefGoogle Scholar
  28. 28.
    T. Higaki, K. S. Jeong, and F. Takahashi, Phys. Lett. B 733, 25 (2014), arXiv: 1402.6965.ADSCrossRefGoogle Scholar
  29. 29.
    Z. Kang, P. Ko, T. Li, and Y. Liu, Phys. Lett. B 742, 249 (2015), arXiv: 1403.7742.ADSCrossRefGoogle Scholar
  30. 30.
    J. Jaeckel, J. Redondo, and A. Ringwald, Phys. Rev. D 89, 103511 (2014), arXiv: 1402.7335.ADSCrossRefGoogle Scholar
  31. 31.
    J. M. Cline, and A. R. Frey, J. Cosmol. Astropart. Phys. 1410, 013 (2014).ADSCrossRefGoogle Scholar
  32. 32.
    H. M. Lee, S. C. Park, and W. I. Park, Eur. Phys. J. C 74, 3062 (2014), arXiv: 1403.0865.ADSCrossRefGoogle Scholar
  33. 33.
    J. C. Park, K. Kong, and S. C. Park, Phys. Lett. B 733, 217 (2014), arXiv: 1403.1536.ADSCrossRefGoogle Scholar
  34. 34.
    K. Y. Choi, and O. Seto, Phys. Lett. B 735, 92 (2014), arXiv: 1403.1782.ADSCrossRefGoogle Scholar
  35. 35.
    S. Baek, and H. Okada, arXiv: 1403.1710.Google Scholar
  36. 36.
    T. Tsuyuki, Phys. Rev. D 90, 013007 (2014), arXiv: 1403.5053.ADSCrossRefGoogle Scholar
  37. 37.
    J. M. Cline, and A. R. Frey, Phys. Rev. D 90, 123537 (2014), arXiv: 1410.7766.ADSCrossRefGoogle Scholar
  38. 38.
    F. L. Bezrukov, and D. S. Gorbunov, Phys. Lett. B 736, 494 (2014), arXiv: 1403.4638.ADSCrossRefGoogle Scholar
  39. 39.
    C. Kolda, and J. Unwin, Phys. Rev. D 90, 023535 (2014), arXiv: 1403.5580.ADSCrossRefGoogle Scholar
  40. 40.
    R. Allahverdi, B. Dutta, and Y. Gao, Phys. Rev. D 89, 127305 (2014), arXiv: 1403.5717.ADSCrossRefGoogle Scholar
  41. 41.
    K. S. Babu, and R. N. Mohapatra, Phys. Rev. D 89, 115011 (2014), arXiv: 1404.2220.ADSCrossRefGoogle Scholar
  42. 42.
    E. Dudas, L. Heurtier, and Y. Mambrini, Phys. Rev. D 90, 035002 (2014), arXiv: 1404.1927.ADSCrossRefGoogle Scholar
  43. 43.
    C. El Aisati, T. Hambye, and T. Scarná, J. High Energ. Phys. 2014, 133 (2014), arXiv: 1403.1280.CrossRefGoogle Scholar
  44. 44.
    K. P. Modak, J. High Energ. Phys. 2015, 64 (2015), arXiv: 1404.3676.CrossRefGoogle Scholar
  45. 45.
    C. W. Chiang, and T. Yamada, J. High Energ. Phys. 2014, 6 (2014), arXiv: 1407.0460.CrossRefGoogle Scholar
  46. 46.
    A. Falkowski, Y. Hochberg, and J. T. Ruderman, J. High Energ. Phys. 2014, 140 (2014), arXiv: 1409.2872.ADSCrossRefGoogle Scholar
  47. 47.
    S. Patra, N. Sahoo, and N. Sahu, Phys. Rev. D 91, 115013 (2015), arXiv: 1412.4253.ADSCrossRefGoogle Scholar
  48. 48.
    G. Arcadi, L. Covi, and F. Dradi, J. Cosmol. Astropart. Phys. 2015, 023 (2015), arXiv: 1412.6351.CrossRefGoogle Scholar
  49. 49.
    A. D. Banik, M. Pandey, D. Majumdar, and A. Biswas, Eur. Phys. J. C 77, 657 (2017), arXiv: 1612.08621.ADSCrossRefGoogle Scholar
  50. 50.
    K. N. Abazajian, arXiv: 1705.01837.Google Scholar
  51. 51.
    J. Heeck, and D. Teresi, arXiv: 1706.09909.Google Scholar
  52. 52.
    L. Roszkowski, E. M. Sessolo, and S. Trojanowski, arXiv: 1707.06277.Google Scholar
  53. 53.
    K. J. Bae, A. Kamada, S. P. Liew, and K. Yanagi, arXiv: 1707.06418.Google Scholar
  54. 54.
    A. Biswas, S. Choubey, L. Covi, and S. Khan, arXiv: 1711.00553.Google Scholar
  55. 55.
    M. Cirelli, N. Fornengo, and A. Strumia, Nucl. Phys. B 753, 178 (2006).ADSCrossRefGoogle Scholar
  56. 56.
    K. A. Olive, et al. (Particle Data Group Collaboration), Chin. Phys. C 40, 100001 (2016).Google Scholar
  57. 57.
    B. Ren, K. Tsumura, and X. G. He, Phys. Rev. D 84, 073004 (2011), arXiv: 1107.5879.ADSCrossRefGoogle Scholar
  58. 58.
    J. Liu, X. Chen, and X. Ji, Nat. Phys. 13, 212 (2017), arXiv: 1709.00688.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations