Advertisement

Kinetic Monte Carlo codedevelopment and application on the formation of hydrogen-vacancy clusters in tungsten

  • Chao Meng
  • JianNan Hao
  • Ke Xu
  • Li-Fang Wang
  • XiaoLin Shu
  • Shuo JinEmail author
  • Guang-Hong LuEmail author
Article
  • 40 Downloads

Abstract

We have developed an object kinetic Monte Carlo (OKMC) code and simulated hydrogen-vacancy clustering behavior and dependence on temperature and hydrogen-vacancy ratio in tungsten. For each of the temperatures we simulated from 300 K to 1000 K, HnV clusters with smaller n form before those with larger n. The elevating temperature leads to a decrease in hydrogen vacancies: H10V and H9V clusters dominate at 300 K and 600 K, whereas H5V, H6V, and H7V clusters dominate when the temperature reaches 1000 K. Furthermore, only HnV clusters with smaller n formed when a lower hydrogen-vacancy ratio was used due to insufficient availability of hydrogen atoms to occupy vacancies. The results suggest hydrogen emission occurs very rarely at lower temperatures, while higher temperatures facilitate the dissociation of hydrogen from HnV clusters.

Keywords

tungsten hydrogen vacancy KMC 

References

  1. 1.
    Y. T. Ma, Y. Zhang, G. H. Lu, and K. G. Zhu, Sci. China–Phys. Mech. Astron. 56, 1396 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    Q. L. Meng, L. L. Niu, Y. Zhang, and G. H. Lu, Sci. China–Phys. Mech. Astron. 61, 017121 (2018).ADSCrossRefGoogle Scholar
  3. 3.
    V. K. Alimov, W. M. Shu, J. Roth, K. Sugiyama, S. Lindig, M. Balden, K. Isobe, and T. Yamanishi, Phys. Scr. T138, 014048 (2009).Google Scholar
  4. 4.
    R. A. Causey, J. Nucl. Mater. 300, 91 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    L. Cheng, G. De Temmerman, T. W. Morgan, T. Schwarz–Selinger, Y. Yuan, H. B. Zhou, B. Wang, Y. Zhang, and G. H. Lu, Nucl. Fusion 57, 046028 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    R. A. Causet, and T. J. Venhaus, Physica Scripta T94, 9 (2001).Google Scholar
  7. 7.
    G. N. Luo, K. Umstadter, W. M. Shu, W. Wampler, and G. H. Lu, Nucl. Instrum. Methods Phys. Res. Sect. B–Beam Interact. Mater. Atoms 267, 3041 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    S. Y. Qin, S. Jin, L. L. Niu, J. N. Hao, H. B. Zhou, and G. H. Lu, Sci. China–Phys. Mech. Astron. 60, 067021 (2017).ADSCrossRefGoogle Scholar
  9. 9.
    Y. Yu, X. L. Shu, Y. N. Liu, L. L. Niu, S. Jin, F. Gao, and G. H. Lu, Sci. China–Phys. Mech. Astron. 58, 1 (2015).CrossRefGoogle Scholar
  10. 10.
    S. Y. Hu, Y. Yu, W. S. Yuan, Y. H. Wang, X. L. Shu, and G. H. Lu, Sci. China–Phys. Mech. Astron. 60, 047021 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    Y. L. Liu, Y. Zhang, H. B. Zhou, G. H. Lu, F. Liu, and G. N. Luo, Phys. Rev. B 79, 172103 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    D. F. Johnson, and E. A. Carter, J. Mater. Res. 25, 315 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    G. H. Lu, H. B. Zhou, and C. S. Becquart, Nucl. Fusion 54, 086001 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    Y. L. Liu, Y. Zhang, G. N. Luo, and G. H. Lu, J. Nucl. Mater. 390–391, 1032 (2009).CrossRefGoogle Scholar
  15. 15.
    Y. N. Liu, T. Wu, Y. Yu, X. C. Li, X. Shu, and G. H. Lu, J. Nucl. Mater. 455, 676 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    S. Liu, S. Dai, C. Sang, J. Sun, T. Stirner, and D. Wang, J. Nucl. Mater. 463, 363 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    W. M. Young, and E. W. Elcock, Proc. Phys. Soc. 89, 735 (1966).ADSCrossRefGoogle Scholar
  18. 18.
    A. De Backer, G. Adjanor, C. Domain, M. L. Lescoat, S. Jublot–Leclerc, F. Fortuna, A. Gentils, C. J. Ortiz, A. Souidi, and C. S. Becquart, Nucl. Instrum. Methods Phys. Res. Sect. B–Beam Interact. Mater. Atoms 352, 107 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    A. Lasa, S. K. Tähtinen, and K. Nordlund, EPL 105, 25002 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    X. Yang, and A. Hassanein, Fusion Eng. Des. 89, 2545 (2014).CrossRefGoogle Scholar
  21. 21.
    X. Yang, and W. O. Oyeniyi, Fusion Eng. Des. 114, 113 (2017).CrossRefGoogle Scholar
  22. 22.
    T. Oda, D. Zhu, and Y. Watanabe, J. Nucl. Mater. 467, 439 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).ADSCrossRefGoogle Scholar
  24. 24.
    K. A. Fichthorn, and W. H. Weinberg, J. Chem. Phys. 95, 1090 (1991).ADSCrossRefGoogle Scholar
  25. 25.
    L. Ventelon, F. Willaime, C. C. Fu, M. Heran, and I. Ginoux, J. Nucl. Mater. 425, 16 (2012).ADSCrossRefGoogle Scholar
  26. 26.
    C. S. Becquart, C. Domain, U. Sarkar, A. DeBacker, and M. Hou, J. Nucl. Mater. 403, 75 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    D. Kato, H. Iwakiri, and K. Morishita, J. Nucl. Mater. 417, 1115 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    C. S. Becquart, A. Barbu, J. L. Bocquet, M. J. Caturla, C. Domain, C. C. Fu, S. I. Golubov, M. Hou, L. Malerba, C. J. Ortiz, A. Souidi, and R. E. Stoller, J. Nucl. Mater. 406, 39 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    L. F. Wang, X. Shu, G. H. Lu, and F. Gao, J. Phys.–Condens. Matter 29, 435401 (2017).ADSCrossRefGoogle Scholar
  30. 30.
    T. Ikeda, T. Otsuka, and T. Tanabe, J. Nucl. Mater. 415, S684 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsBeihang UniversityBeijingChina
  2. 2.Beijing Key Laboratory of Advanced Nuclear Materials & PhysicsBeihang UniversityBeijingChina

Personalised recommendations