Molecular dynamics simulation of cylindrical Richtmyer-Meshkov instability

  • Zhenhong Wu
  • Shenghong Huang
  • Juchun DingEmail author
  • Weirong Wang
  • Xisheng Luo


The microscopic-scale Richtmyer-Meshkov (RM) instability of a single-mode Cu-He interface subjected to a cylindrically con- verging shock is studied through the classical molecular dynamics simulation. An unperturbed interface is first considered to examine the flow features in the convergent geometry, and notable distortions at the circular inhomogeneity are observed due to the atomic fluctuation. Detailed processes of the shock propagation and interface deformation for the single-mode interface impacted by a converging shock are clearly captured. Different from the macroscopic-scale situation, the intense molecular ther- mal motions in the present microscale flow introduce massive small wavelength perturbations at the single-mode interface, which later significantly impede the formation of the roll-up structure. Influences of the initial conditions including the initial amplitude, wave number and density ratio on the instability growth are carefully analyzed. It is found that the late-stage instability develop- ment for interfaces with a large perturbation does not depend on its initial amplitude any more. Surprisingly, as the wave number increases from 8 to 12, the growth rate after the reshock drops gradually. The distinct behaviors induced by the amplitude and wave number increments indicate that the present microscopic RM instability cannot be simply characterized by the amplitude over wavelength ratio (η). The pressure history at the convergence center shows that the first pressure peak caused by the shock focusing is insensitive to η, while the second one depends heavily on it.


molecular dynamics simulation Richtmyer-Meshkov instability converging shock 


  1. 1.
    R. D. Richtmyer, Comm. Pure Appl. Math. 13, 297 (1960).MathSciNetCrossRefGoogle Scholar
  2. 2.
    E. E. Meshkov, Fluid Dyn 4, 101 (1969).ADSCrossRefGoogle Scholar
  3. 3.
    J. Yang, T. Kubota, and E. E. Zukoski, AIAA J. 31, 854 (1993).ADSCrossRefGoogle Scholar
  4. 4.
    L. F. Wang, W. H. Ye, X. T. He, J. F. Wu, Z. F. Fan, C. Xue, H. Y. Guo, W. Y. Miao, Y. T. Yuan, J. Q. Dong, G. Jia, J. Zhang, Y. J. Li, J. Liu, M. Wang, Y. K. Ding, and W. Y. Zhang, Sci. China–Phys. Mech. Astron. 60, 055201 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    J. Lindl, O. Landen, J. Edwards, and E. Moses, Phys. Plasmas 21, 020501 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    Y. Zhou, Phys. Rep. 720–722, 1 (2017).Google Scholar
  7. 7.
    Y. Zhou, Phys. Rep. 723–725, 1 (2017).Google Scholar
  8. 8.
    M. Vandenboomgaerde, P. Rouzier, D. Souffland, L. Biamino, G. Jourdan, L. Houas, and C. Mariani, Phys. Rev. Fluids 3, 014001 (2018).ADSCrossRefGoogle Scholar
  9. 9.
    L. Biamino, G. Jourdan, C. Mariani, L. Houas, M. Vandenboomgaerde, and D. Souffland, Exp. Fluids 56, 26 (2015).CrossRefGoogle Scholar
  10. 10.
    S. H. R. Hosseini, and K. Takayama, Phys. Fluids 17, 084101 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    J. Ding, T. Si, J. Yang, X. Lu, Z. Zhai, and X. Luo, Phys. Rev. Lett. 119, 014501 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    F. Lei, J. Ding, T. Si, Z. Zhai, and X. Luo, J. Fluid Mech. 826, 819 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    T. Si, T. Long, Z. Zhai, and X. Luo, J. Fluid Mech. 784, 225 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    G. I. Bell, Report No. LA–1321 (1951).Google Scholar
  15. 15.
    M. S. Plesset, J. Appl. Phys. 25, 96 (1954).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    L. Rayleigh, Proc. London Math. Soc. 14, 170 (1883).MathSciNetGoogle Scholar
  17. 17.
    G. Taylor, Proc. R. Soc. A–Math. Phys. Eng. Sci. 201, 192 (1950).ADSCrossRefGoogle Scholar
  18. 18.
    Q. Zhang, and M. J. Graham, Phys. Fluids 10, 974 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    Q. Zhang, and M. J. Graham, Phys. Rev. Lett. 79, 2674 (1997).ADSCrossRefGoogle Scholar
  20. 20.
    S. Dutta, J. Glimm, J. W. Grove, D. H. Sharp, and Y. Zhang, Math. Comput. Simul. 65, 417 (2004).CrossRefGoogle Scholar
  21. 21.
    B. Tian, D. Fu, and Y. Ma, Acta Mech. Sin. 22, 9 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    B. Tian, W. Shen, S. Jiang, S. Wang, and L. Yan, Comput. Fluids 46, 113 (2011).MathSciNetCrossRefGoogle Scholar
  23. 23.
    J. G. Zheng, T. S. Lee, and S. H. Winoto, Math. Comput. Simul. 79, 749 (2008).CrossRefGoogle Scholar
  24. 24.
    H. Yong, C. L. Zhai, S. Jiang, P. Song, Z. S. Dai, and J. F. Gu, Sci. China–Phys. Mech. Astron. 59, 614704 (2016).CrossRefGoogle Scholar
  25. 25.
    T. Wang, J. S. Bai, P. Li, and K. Liu, Sci. China–Phys. Mech. Astron. 53, 905 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    M. Lombardini, D. I. Pullin, and D. I. Meiron, J. Fluid Mech. 748, 113 (2014).ADSCrossRefGoogle Scholar
  27. 27.
    S. V. Zybin, V. V. Zhakhovskii, E. M. Bringa, S. I. Abarzhi, and B. Remington, AIP Conf. Proc. 845, 437 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    O. Durand, and L. Soulard, J. Appl. Phys. 111, 044901 (2012).ADSCrossRefGoogle Scholar
  29. 29.
    B. Li, F. P. Zhao, H. A. Wu, and S. N. Luo, J. Appl. Phys. 115, 073504 (2014).ADSCrossRefGoogle Scholar
  30. 30.
    D. J. Bell, N. R. Routley, J. C. F. Millett, G. Whiteman, M. A. Collinson, and P. T. Keightley, J. Dyn. Behav. Mater. 3, 208 (2017).CrossRefGoogle Scholar
  31. 31.
    T. C. Germann, G. Dimonte, J. E. Hammerberg, K. Kadau, J. Quenneville, and M. B. Zellner, EDP Sciences 2009, 1499 (2009).Google Scholar
  32. 32.
    V. V. Zhakhovskii, S. V. Zybin, S. I. Abarzhi, and K. Nishihara, Am. Inst. Phys. Conf. Proc. 845, 433 (2006).ADSGoogle Scholar
  33. 33.
    H. Liu, W. Kang, Q. Zhang, Y. Zhang, H. Duan, and X. T. He, Front. Phys. 11, 115206 (2016).CrossRefGoogle Scholar
  34. 34.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995).ADSCrossRefGoogle Scholar
  35. 35.
    S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986).ADSCrossRefGoogle Scholar
  36. 36.
    E. M. Bringa, J. U. Cazamias, P. Erhart, J. Stölken, N. Tanushev, B. D. Wirth, R. E. Rudd, and M. J. Caturla, J. Appl. Phys. 96, 3793 (2004).ADSCrossRefGoogle Scholar
  37. 37.
    Q. An, S. N. Luo, L. B. Han, L. Zheng, and O. Tschauner, J. Phys.–Condens. Matter 20, 095220 (2008).ADSCrossRefGoogle Scholar
  38. 38.
    A. Kashinath, and M. J. Demkowicz, Model. Simul. Mater. Sci. Eng. 19, 035007 (2011).ADSCrossRefGoogle Scholar
  39. 39.
    C. Gonzalez, D. Fernández–Pello, M. A. Cerdeira, S. L. Palacios, and R. Iglesias, Model. Simul. Mater. Sci. Eng. 22, 035019 (2014).ADSCrossRefGoogle Scholar
  40. 40.
    B. Li, L. Wang, J. C. E, H. H. Ma, and S. N. Luo, J. Appl. Phys. 116, 213506 (2014).ADSCrossRefGoogle Scholar
  41. 41.
    W. J. Nellis, N. C. Holmes, A. C. Mitchell, R. J. Trainor, G. K. Governo, M. Ross, and D. A. Young, Phys. Rev. Lett. 53, 1248 (1984).ADSCrossRefGoogle Scholar
  42. 42.
    B. L. Holian, Phys. Rev. A 37, 2562 (1988).ADSCrossRefGoogle Scholar
  43. 43.
    B. L. Holian, and G. K. Straub, Phys. Rev. Lett. 43, 1598 (1979).ADSCrossRefGoogle Scholar
  44. 44.
    J. J. Magda, M. Tirrell, and H. T. Davis, J. Chem. Phys. 83, 1888 (1985).ADSCrossRefGoogle Scholar
  45. 45.
    G. Guderley, Luftfahrtforschung 19, 302 (1942).MathSciNetGoogle Scholar
  46. 46.
    K. Kadau, T. C. Germann, N. G. Hadjiconstantinou, P. S. Lomdahl, G. Dimonte, B. L. Holian, and B. J. Alder, Proc. Natl. Acad. Sci. USA 101,5851 (2004).Google Scholar
  47. 47.
    K. Kadau, C. Rosenblatt, J. L. Barber, T. C. Germann, Z. Huang, P. Carles, and B. J. Alder, Proc. Natl. Acad. Sci. USA 104, 7741 (2007).ADSCrossRefGoogle Scholar
  48. 48.
    J. Zhang, and J. Fan, Phys. Rev. E 79, 056302 (2009).ADSCrossRefGoogle Scholar
  49. 49.
    J. Zhang, and T. Önskog, Phys. Rev. E 96, 043104 (2017).ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    N. Apazidis, M. B. Lesser, N. Tillmark, and B. Johansson, Shock Waves 12, 39 (2002).ADSCrossRefGoogle Scholar
  51. 51.
    N. Apazidis, M. Kjellander, and N. Tillmark, Shock Waves 23, 361 (2013).ADSCrossRefGoogle Scholar
  52. 52.
    M. Vandenboomgaerde, D. Souffland, C. Mariani, L. Biamino, G. Jourdan, and L. Houas, Phys. Fluids 26, 024109 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhenhong Wu
    • 1
  • Shenghong Huang
    • 1
  • Juchun Ding
    • 1
    Email author
  • Weirong Wang
    • 1
  • Xisheng Luo
    • 1
  1. 1.Department of Modern MechanicsUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations