Advertisement

The CST bounce universe model — A parametric study

  • Yeuk-Kwan Edna CheungEmail author
  • Xue Song
  • ShuYi Li
  • YunXuan Li
  • YiQing Zhu
Article

Abstract

A bounce universe model with a scale-invariant and stable spectrum of primordial density perturbations was constructed using a consistent truncation of the D-brane dynamics from Type IIB string theory. A coupling was introduced between the tachyon field and the adjoint Higgs field on the D3-branes to lock the tachyon at the top of its potential hill and to model the bounce process, which is known as the Coupled Scalar and Tachyon Bounce (CSTB) Universe. The CSTB model has been shown to be ghost free, and it fulfils the null energy condition; in addition, it can also solve the Big Bang cosmic singularity problem. In this paper we conduct an extensive follow-up study of the parameter space of the CSTB model. In particular we are interested in the parameter values that can produce a single bounce to arrive at a radiation-dominated universe. We further establish that the CSTB universe is a viable alternative to inflation, as it can naturally produce a sufficient number of e-foldings in the locked inflation epoch and in the post-bounce expansion to overcome the four fundamental limitations of the Big Bang cosmology, which are flatness, horizon, homogeneity and singularity, resulting in a universe of the current size.

Keywords

bounce universe Big Bang singularity tachyon inflation flatness and horizon problems 

References

  1. 1.
    A. H. Guth, Phys. Rev. D 23, 347 (1981).CrossRefGoogle Scholar
  2. 2.
    A. H. Guth, D. I. Kaiser, and Y. Nomura, Phys. Lett. B 733, 112 (2014), arXiv: 1312.7619CrossRefGoogle Scholar
  3. 2a.
    A. Linde, arXiv: 1402.0526.Google Scholar
  4. 3.
    G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L. Bennett, J. Dunkley, M. R. Nolta, M. Halpern, R. S. Hill, N. Odegard, L. Page, K. M. Smith, J. L. Weiland, B. Gold, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, E. Wollack, and E. L. Wright, Astrophys. J. Suppl. Ser. 208, 19 (2013), arXiv: 1212.5226CrossRefGoogle Scholar
  5. 3a.
    P. A. R. Ade, et al. (Planck Collaboration), Astron. Astrophys. 594, A16 (2016), arXiv: 1506.07135.CrossRefGoogle Scholar
  6. 4.
    V. F. Mukhanov, and G. V. Chibisov, JETP Lett. 33, 532 (1981); Sov. Phys. JETP 56, 2585 (1982).Google Scholar
  7. 5.
    A. Borde, and A. Vilenkin, Phys. Rev. Lett. 72, 3305 (1994).CrossRefGoogle Scholar
  8. 6.
    M. Trodden, V. F. Mukhanov, and R. H. Brandenberger, Phys. Lett. B 316, 483 (1993).MathSciNetCrossRefGoogle Scholar
  9. 7.
    M. Gasperini, and G. Veneziano, Phys. Rep. 373, 1 (2003).MathSciNetCrossRefGoogle Scholar
  10. 8.
    A. Linde, Fortschr. Phys. 57, 418 (2009).MathSciNetCrossRefGoogle Scholar
  11. 9.
    S.-H. H. Tye, in String Theory and Fundamental Interactions. Lecture Notes in Physics, vol 737, edited by M. Gasperini, and J. Maharana, (Springer, Berlin, Heidelberg, 2008).Google Scholar
  12. 10.
    S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, Phys. Rep. 692, 1 (2017), arXiv: 1705.11098MathSciNetCrossRefGoogle Scholar
  13. 10a.
    R. Brandenberger, and P. Peter, arXiv: 1603.05834Google Scholar
  14. 10b.
    D. Battefeld, and P. Peter, Phys. Rep. 571, 1 (2015), arXiv: 1406.2790MathSciNetCrossRefGoogle Scholar
  15. 10c.
    E. Wilson-Ewing, J. Cosmol. Astropart. Phys. 2013, 026 (2013), arXiv: 1211.6269MathSciNetCrossRefGoogle Scholar
  16. 10d.
    M. Novello, and S. Bergliaffa, Phys. Rep. 463, 127 (2008), arXiv: 0802.1634MathSciNetCrossRefGoogle Scholar
  17. 10e.
    Y. F. Cai, D. A. Easson, and R. Brandenberger, J. Cosmol. Astropart. Phys. 2012, 020 (2012), arXiv: 1206.2382.CrossRefGoogle Scholar
  18. 11.
    P. J. Steinhardt, Science 296, 1436 (2002).MathSciNetCrossRefGoogle Scholar
  19. 12.
    D. Wands, Phys. Rev. D 60, 023507 (1999).CrossRefGoogle Scholar
  20. 13.
    F. Finelli, and R. Brandenberger, Phys. Rev. D 65, 103522 (2002), arXiv: hep-th/0112249.CrossRefGoogle Scholar
  21. 14.
    C. Lin, R. H. Brandenberger, and L. P. Levasseur, J. Cosmol. Astropart. Phys. 2011, 019 (2011), arXiv: 1007.2654CrossRefGoogle Scholar
  22. 14a.
    R. H. Brandenberger, arXiv: 1206.4196.Google Scholar
  23. 15.
    R. Brandenberger, Phys. Rev. D 80, 043516 (2009), arXiv: 0904.2835.MathSciNetCrossRefGoogle Scholar
  24. 16.
    T. Qiu, and K. C. Yang, J. Cosmol. Astropart. Phys. 2010, 012 (2010), arXiv: 1007.2571.CrossRefGoogle Scholar
  25. 17.
    Y. F. Cai, S. H. Chen, J. B. Dent, S. Dutta, and E. N. Saridakis, Class. Quantum Grav. 28, 215011 (2011), arXiv: 1104.4349.CrossRefGoogle Scholar
  26. 18.
    S. D. Odintsov, and V. K. Oikonomou, Phys. Rev. D 90, 124083 (2014), arXiv: 1410.8183.CrossRefGoogle Scholar
  27. 19.
    M. Koehn, J. L. Lehners, and B. A. Ovrut, Phys. Rev. D 90, 025005 (2014), arXiv: 1310.7577.CrossRefGoogle Scholar
  28. 20.
    T. Qiu, and Y. T. Wang, J. High Energ. Phys. 2015, 130 (2015), arXiv: 1501.03568.CrossRefGoogle Scholar
  29. 21.
    K. Bhattacharya, Y. F. Cai, and S. Das, Phys. Rev. D 87, 083511 (2013), arXiv: 1301.0661CrossRefGoogle Scholar
  30. 21a.
    Y. F. Cai, T. Qiu, R. Brandenberger, and X. Zhang, Phys. Rev. D 80, 023511 (2009), arXiv: 0810.4677.CrossRefGoogle Scholar
  31. 22.
    Y. F. Cai, T. Qiu, R. Brandenberger, and X. Zhang, Phys. Rev. D 80, 023511 (2009), arXiv: 0810.4677.CrossRefGoogle Scholar
  32. 23.
    Y. F. Cai, T. Qiu, X. Zhang, Y. S. Piao, and M. Li, J. High Energy Phys. 2007, 071 (2007), arXiv: 0704.1090.CrossRefGoogle Scholar
  33. 24.
    Y. F. Cai, and X. Zhang, J. Cosmol. Astropart. Phys. 2009, 003 (2009), arXiv: 0808.2551.CrossRefGoogle Scholar
  34. 25.
    J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, Phys. Rev. D 64, 123522 (2001)MathSciNetCrossRefGoogle Scholar
  35. 25a.
    D. H. Lyth, Phys. Lett. B 524, 1 (2002)CrossRefGoogle Scholar
  36. 25b.
    R. Brandenberger, and F. Finelli, J. High Energy Phys. 2001, 056 (2001).CrossRefGoogle Scholar
  37. 26.
    S. Carloni, P. K. S. Dunsby, and D. Solomons, Class. Quantum Grav. 23, 1913 (2006).CrossRefGoogle Scholar
  38. 27.
    A. Sen, J. High Energy Phys. 2002, 048 (2002).CrossRefGoogle Scholar
  39. 28.
    A. Sen, J. High Energy Phys. 2002, 065 (2002).CrossRefGoogle Scholar
  40. 29.
    G. W. Gibbons, Phys. Lett. B 537, 1 (2002).MathSciNetCrossRefGoogle Scholar
  41. 30.
    C. Li, L. Wang, and Y. K. E. Cheung, Phys. Dark Universe 3, 18 (2014), arXiv: 1101.0202.CrossRefGoogle Scholar
  42. 31.
    C. Li, and Y. K. E. Cheung, arXiv: 1211.1610.Google Scholar
  43. 32.
    C. Li, and Y. K. E. Cheung, J. Cosmol. Astropart. Phys. 2014, 008 (2014), arXiv: 1401.0094.CrossRefGoogle Scholar
  44. 33.
    C. Li, R. H. Brandenberger, and Y. K. E. Cheung, Phys. Rev. D 90, 123535 (2014), arXiv: 1403.5625.CrossRefGoogle Scholar
  45. 34.
    Y. K. E. Cheung, J. U. Kang, and C. Li, J. Cosmol. Astropart. Phys. 2014, 001 (2014), arXiv: 1408.4387.CrossRefGoogle Scholar
  46. 35.
    Y. K. E. Cheung, and J. D. Vergados, J. Cosmol. Astropart. Phys. 2015, 014 (2015), arXiv: 1410.5710.CrossRefGoogle Scholar
  47. 36.
    Y. K. Cheung, C. Li, and J. Vergados, Symmetry 8, 136 (2016), arXiv: 1611.04027.CrossRefGoogle Scholar
  48. 37.
    J. D. Vergados, C. C. Moustakidis, Y. K. E. Cheung, H. Ejiri, Y. Kim, and J. Y. Lee, Adv. High Energy Phys. 2018, 1 (2018), arXiv: 1605.05413.CrossRefGoogle Scholar
  49. 38.
    G. Dvali, and S. H. H. Tye, Phys. Lett. B 450, 72 (1999).MathSciNetCrossRefGoogle Scholar
  50. 39.
    C. Molina-París, and M. Visser, Phys. Lett. B 455, 90 (1999), arXiv: gr-qc/9810023.MathSciNetCrossRefGoogle Scholar
  51. 40.
    A. Sen, and B. Zwiebach, J. High Energy Phys. 2000, 002 (2000)CrossRefGoogle Scholar
  52. 40a.
    N. Berkovits, A. Sen, and B. Zwiebach, Nucl. Phys. B 587, 147 (2000).CrossRefGoogle Scholar
  53. 41.
    N. Berkovits, A. Sen, and B. Zwiebach, Nucl. Phys. B 587, 147 (2000).CrossRefGoogle Scholar
  54. 42.
    M. Drewes, and J. U. Kang, J. High Energ. Phys. 2016, 51 (2016), arXiv: 1510.05646CrossRefGoogle Scholar
  55. 42a.
    Y. K. E. Cheung, M. Drewes, J. U. Kang, and J. C. Kim, J. High Energ. Phys. 2015, 59 (2015), arXiv: 1504.04444.CrossRefGoogle Scholar
  56. 43.
    Y. F. Cai, Sci. China-Phys. Mech. Astron. 57, 1414 (2014), arXiv: 1405.1369.CrossRefGoogle Scholar
  57. 44.
    L. Ming, T. Zheng, and Y. K. E. Cheung, arXiv: 1701.04287.Google Scholar
  58. 45.
    R. H. Brandenberger, E. G. M. Ferreira, I. A. Morrison, Y. F. Cai, S. R. Das, and Y. Wang, Phys. Rev. D 94, 083508 (2016), arXiv: 1601.00231.MathSciNetCrossRefGoogle Scholar
  59. 46.
    S. P. Kumar, and V. Vaganov, arXiv: 1512.07184.Google Scholar
  60. 47.
    A. Bzowski, T. Hertog, and M. Schillo, arXiv: 1512.05761.Google Scholar
  61. 48.
    S. P. Kumar, and V. Vaganov, arXiv: 1510.03281.Google Scholar
  62. 49.
    J. L. F. Barbon, and E. Rabinovici, arXiv: 1509.09291.Google Scholar
  63. 50.
    N. Engelhardt, and G. T. Horowitz, arXiv: 1509.07509.Google Scholar
  64. 51.
    N. Engelhardt, T. Hertog, and G. T. Horowitz, J. High Energ. Phys. 2015, 44 (2015), arXiv: 1503.08838.CrossRefGoogle Scholar
  65. 52.
    A. Enciso, and N. Kamran, Gen. Relativ. Gravit. 47, 147 (2015), arXiv: 1502.01622.CrossRefGoogle Scholar
  66. 53.
    S. Banerjee, S. Bhowmick, S. Chatterjee, and S. Mukherji, J. High Energ. Phys. 2015, 43 (2015), arXiv: 1501.06317.CrossRefGoogle Scholar
  67. 54.
    V. Balasubramanian, P. Kraus, A. Lawrence, and S. P. Trivedi, Phys. Rev. D 59, 104021 (1999).MathSciNetCrossRefGoogle Scholar
  68. 55.
    T. Hertog, and G. T. Horowitz, J. High Energy Phys. 2005, 005 (2005).CrossRefGoogle Scholar
  69. 56.
    A. Hamilton, D. Kabat, G. Lifschytz, and D. A. Lowe, Phys. Rev. D 73, 086003 (2006).CrossRefGoogle Scholar
  70. 57.
    C. S. Chu, and P. M. Ho, J. High Energy Phys. 2006, 013 (2006).Google Scholar
  71. 58.
    S. R. Das, J. Michelson, K. Narayan, and S. P. Trivedi, Phys. Rev. D 74, 026002 (2006).MathSciNetCrossRefGoogle Scholar
  72. 59.
    C. S. Chu, and P. M. Ho, J. High Energy Phys. 2008, 058 (2008), arXiv: 0710.2640.CrossRefGoogle Scholar
  73. 60.
    N. Turok, B. Craps, and T. Hertog, arXiv: 0711.1824.Google Scholar
  74. 61.
    A. Awad, S. R. Das, K. Narayan, and S. P. Trivedi, Phys. Rev. D 77, 046008 (2008), arXiv: 0711.2994.MathSciNetCrossRefGoogle Scholar
  75. 62.
    B. Craps, T. Hertog, and N. Turok, Phys. Rev. D 86, 043513 (2012), arXiv: 0712.4180.CrossRefGoogle Scholar
  76. 63.
    J. L. F. Barb´on, and E. Rabinovici, J. High Energ. Phys. 2011, 44 (2011), arXiv: 1102.3015.CrossRefGoogle Scholar
  77. 64.
    A. Enciso, and N. Kamran, Phys. Rev. D 85, 106016 (2012), arXiv: 1203.2743.CrossRefGoogle Scholar
  78. 65.
    N. Engelhardt, T. Hertog, and G. T. Horowitz, Phys. Rev. Lett. 113, 121602 (2014), arXiv: 1404.2309.CrossRefGoogle Scholar
  79. 66.
    L. Randall, and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).MathSciNetCrossRefGoogle Scholar
  80. 67.
    R. Brandenberger, and C. Vafa, Nucl. Phys. B 316, 391 (1989).CrossRefGoogle Scholar
  81. 68.
    C. Kounnas, H. Partouche, and N. Toumbas, Nucl. Phys. B 855, 280 (2012), arXiv: 1106.0946.CrossRefGoogle Scholar
  82. 69.
    A. Berndsen, and J. Cline, Int. J. Mod. Phys. A 19, 5311 (2004)[hepth/ 0408185].CrossRefGoogle Scholar
  83. 70.
    S. Watson, Phys. Rev. D 70, 066005 (2004)[hep-th/0404177].CrossRefGoogle Scholar
  84. 71.
    Y. K. E. Cheung, S. Watson, and R. Brandenberger, J. High Energy Phys. 2006, 025 (2006).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yeuk-Kwan Edna Cheung
    • 1
    • 2
    Email author
  • Xue Song
    • 1
    • 3
  • ShuYi Li
    • 1
    • 4
  • YunXuan Li
    • 1
    • 5
  • YiQing Zhu
    • 1
    • 6
  1. 1.Department of PhysicsNanjing UniversityNanjingChina
  2. 2.Institute of High Energy PhysicsChina Academy of SciencesBeijingChina
  3. 3.Department of PhysicsPrinceton UniversityPrincetonUSA
  4. 4.Department of PhysicsBrown UniversityProvidenceUSA
  5. 5.California Insitute of TechnologyPasadenaUSA
  6. 6.ETH ZürichZürichSwitzerland

Personalised recommendations