Advertisement

Analysis of total reaction cross sections for deuterons on 1p-shell-nuclei

  • YiDi Chen
  • Yun Zhang
  • JianLing LouEmail author
  • DanYang PangEmail author
  • YanLin Ye
  • Wei Liu
  • Ying Jiang
  • Gen Li
Article
  • 20 Downloads

Abstract

This study aims to analyze the differential cross sections (DCSs) of elastic scattering and total reaction cross sections (TRCSs) of the loosely-bound deuteron projectile impinging on 1p-shell nuclei, such as 9Be, 12C, and 16O, at incident energies ranging between 10.6 and 171 MeV using the continuum discretized coupled channel (CDCC) method. By fitting the experimental data for the DCSs and TRCSs, energy-dependent renormalization factors for the real and imaginary parts of the nucleon-nucleus optical-model potentials deduced from the studies proposed by Koning and Delaroche (KD02) and by Watson, Singh, and Segel (WSS), are obtained. It is found that with the WSS potential, which was obtained specifically for 1 p-shell nuclei, the CDCC calculations can simultaneously reproduce both the DCSs and the TRCSs. The results show that it is important to choose appropriate optical potentials to describe deuteron-induced reactions.

Keywords

total reaction cross sections differential cross sections deuteron 1p-shell nuclei 

References

  1. 1.
    C. M. Perey, and F. G. Perey, Phys. Rev. 132, 755 (1963).ADSCrossRefGoogle Scholar
  2. 2.
    Y. Zhang, D. Y. Pang, and J. L. Lou, Phys. Rev. C 94, 014619 (2016), arXiv: 1606.01507.ADSCrossRefGoogle Scholar
  3. 3.
    D. Y. Pang, Y. L. Ye, and F. R. Xu, J. Phys. G-Nucl. Part. Phys. 39, 095101 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    W. W. Daehnick, J. D. Childs, and Z. Vrcelj, Phys. Rev. C 21, 2253 (1980).ADSCrossRefGoogle Scholar
  5. 5.
    H. An, and C. Cai, Phys. Rev. C 73, 054605 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    Y. Han, Y. Shi, and Q. Shen, Phys. Rev. C 74, 044615 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    D. Y. Pang, Y. L. Ye, and F. R. Xu, Phys. Rev. C 83, 064619 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    A. Auce, R. F. Carlson, A. J. Cox, A. Ingemarsson, R. Johansson, P. U. Renberg, O. Sundberg, and G. Tibell, Phys. Rev. C 53, 2919 (1996).ADSCrossRefGoogle Scholar
  9. 9.
    S. Mayo, W. Schimmerling, M. J. Sametband, and R. M. Eisberg, Nucl. Phys. 62, 393 (1965).CrossRefGoogle Scholar
  10. 10.
    M. Kamimura, M. Yahiro, Y. Iseri, Y. Sakuragi, H. Kameyama, and M. Kawai, Prog. Theor. Phys. Suppl. 89, 1 (1986).ADSCrossRefGoogle Scholar
  11. 11.
    J. Chen, J. L. Lou, D. Y. Pang, and Y. L. Ye, Sci. China-Phys. Mech. Astron. 59, 632003 (2016).CrossRefGoogle Scholar
  12. 12.
    J. Chen, J. L. Lou, Y. L. Ye, Z. H. Li, Y. C. Ge, Q. T. Li, J. Li, W. Jiang, Y. L. Sun, H. L. Zang, N. Aoi, E. Ideguchi, H. J. Ong, Y. Ayyad, K. Hatanaka, D. T. Tran, T. Yamamoto, M. Tanaka, T. Suzuki, N. T. Tho, J. Rangel, A. M. Moro, D. Y. Pang, J. Lee, J. Wu, H. N. Liu, and C. Wen, Phys. Rev. C 93, 034623 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    J. Chen, J. L. Lou, Y. L. Ye, J. Rangel, A. M. Moro, D. Y. Pang, Z. H. Li, Y. C. Ge, Q. T. Li, J. Li, W. Jiang, Y. L. Sun, H. L. Zang, Y. Zhang, N. Aoi, E. Ideguchi, H. J. Ong, J. Lee, J. Wu, H. N. Liu, C. Wen, Y. Ayyad, K. Hatanaka, T. D. Tran, T. Yamamoto, M. Tanaka, T. Suzuki, and T. T. Nguyen, Phys. Rev. C 94, 064620 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    G. R. Kelly, N. J. Davis, R. P. Ward, B. R. Fulton, G. Tungate, N. Keeley, K. Rusek, E. E. Bartosz, P. D. Cathers, D. D. Caussyn, T. L. Drummer, and K. W. Kemper, Phys. Rev. C 63, 024601 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    J. Lei, and A. M. Moro, Phys. Rev. C 92, 044616 (2015), arXiv: 1510.02602.ADSCrossRefGoogle Scholar
  16. 16.
    J. Lei, and A. M. Moro, Phys. Rev. C 95, 044605 (2017), arXiv: 1701.00547.ADSCrossRefGoogle Scholar
  17. 17.
    A. M. Moro, K. Rusek, J. M. Arias, J. Gómez-Camacho, and M. Rodr´ıguez-Gallardo, Phys. Rev. C 75, 064607 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    I. J. Thompson, Comput. Phys. Rep. 7, 167 (1988).ADSCrossRefGoogle Scholar
  19. 19.
    N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G. Rawitscher, and M. Yahiro, Phys. Rep. 154, 125 (1987).ADSCrossRefGoogle Scholar
  20. 20.
    B. A. Watson, P. P. Singh, and R. E. Segel, Phys. Rev. 182, 977 (1969).ADSCrossRefGoogle Scholar
  21. 21.
    A. J. Koning, and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).ADSCrossRefGoogle Scholar
  22. 22.
    C. M. Chen, Atom. Ener. Sci. Tech. 17, 300 (1983).Google Scholar
  23. 23.
    W. Fitz, R. Jahr, and R. Santo, Nucl. Phys. A 101, 449 (1967).ADSCrossRefGoogle Scholar
  24. 24.
    A. A. Cowley, G. Heymann, R. L. Keizer, and M. J. Scott, Nucl. Phys. 86, 363 (1966).CrossRefGoogle Scholar
  25. 25.
    R. G. Summers-Gill, Phys. Rev. 109, 1591 (1958).ADSCrossRefGoogle Scholar
  26. 26.
    R. J. Slobodrian, Nucl. Phys. 32, 684 (1962).CrossRefGoogle Scholar
  27. 27.
    F. Baldeweg, V. Bredel, H. Guratzsch, R. Klabes, B. Kühn, and G. Stiller, Nucl. Phys. 84, 305 (1966).CrossRefGoogle Scholar
  28. 28.
    E. Newman, L. C. Becker, B. M. Preedom, and J. C. Hiebert, Nucl. Phys. A 100, 225 (1967).ADSCrossRefGoogle Scholar
  29. 29.
    F. Hinterberger, G. Mairle, U. Schmidt-Rohr, G. J. Wagner, and P. Turek, Nucl. Phys. A 111, 265 (1968).ADSCrossRefGoogle Scholar
  30. 30.
    O. Aspelund, G. Hrehuss, A. Kiss, K. T. Knöpfle, C. Mayer-Böricke, M. Rogge, U. Schwinn, Z. Seres, and P. Turek, Nucl. Phys. A 253, 263 (1975).ADSCrossRefGoogle Scholar
  31. 31.
    G. Duhamel, L. Marcus, H. Langevin-Joliot, J. P. Didelez, P. Narboni, and C. Stephan, Nucl. Phys. A 174, 485 (1971).ADSCrossRefGoogle Scholar
  32. 32.
    A. C. Betker, C. A. Gagliardi, D. R. Semon, R. E. Tribble, H. M. Xu, and A. F. Zaruba, Phys. Rev. C 48, 2085 (1993).ADSCrossRefGoogle Scholar
  33. 33.
    C. Bäumer, R. Bassini, A. M. van den Berg, D. De Frenne, D. Frekers, M. Hagemann, V. M. Hannen, M. N. Harakeh, J. Heyse, M. A. de Huu, E. Jacobs, M. Mielke, S. Rakers, R. Schmidt, H. Sohlbach, and H. J. Wörtche, Phys. Rev. C 63, 037601 (2001).ADSCrossRefGoogle Scholar
  34. 34.
    K. W. Corrigan, R. M. Prior, S. E. Darden, and B. A. Robson, Nucl. Phys. A 188, 164 (1972).ADSCrossRefGoogle Scholar
  35. 35.
    A. Korff, P. Haefner, C. Bäumer, A. M. van den Berg, N. Blasi, B. Davids, D. De Frenne, R. de Leo, D. Frekers, E. W. Grewe, M. N. Harakeh, F. Hofmann, M. Hunyadi, E. Jacobs, B. C. Junk, A. Negret, P. von Neumann-Cosel, L. Popescu, S. Rakers, A. Richter, and H. J. Wörtche, Phys. Rev. C 70, 067601 (2004).ADSCrossRefGoogle Scholar
  36. 36.
    W. Jiang, Y. L. Ye, Z. H. Li, C. J. Lin, Q. T. Li, Y. C. Ge, J. L. Lou, D. X. Jiang, J. Li, Z. Y. Tian, J. Feng, B. Yang, Z. H. Yang, J. Chen, H. L. Zang, Q. Liu, P. J. Li, Z. Q. Chen, Y. Zhang, Y. Liu, X. H. Sun, J. Ma, H. M. Jia, X. X. Xu, L. Yang, N. R. Ma, and L. J. Sun, Sci. China-Phys. Mech. Astron. 60, 062011 (2017).ADSCrossRefGoogle Scholar
  37. 37.
    Z. H. Yang, Y. L. Ye, Z. H. Li, J. L. Lou, J. S. Wang, D. X. Jiang, Y. C. Ge, Q. T. Li, H. Hua, X. Q. Li, F. R. Xu, J. C. Pei, R. Qiao, H. B. You, H. Wang, Z. Y. Tian, K. A. Li, Y. L. Sun, H. N. Liu, J. Chen, J. Wu, J. Li, W. Jiang, C. Wen, B. Yang, Y. Y. Yang, P. Ma, J. B. Ma, S. L. Jin, J. L. Han, and J. Lee, Phys. Rev. Lett. 112, 162501 (2014).ADSCrossRefGoogle Scholar
  38. 38.
    Z. H. Yang, Y. L. Ye, Z. H. Li, J. L. Lou, F. R. Xu, J. C. Pei, Z. Y. Tian, K. A. Li, Y. L. Sun, J. Chen, J. Li, W. Jiang, B. Yang, S. D. Chen, Q. Liu, H. L. Zang, J. Feng, and Z. W. Yin, Sci. China-Phys. Mech. Astron. 57, 1613 (2014).ADSCrossRefGoogle Scholar
  39. 39.
    Z. H. Yang, Y. L. Ye, Z. H. Li, J. L. Lou, J. S. Wang, D. X. Jiang, Y. C. Ge, Q. T. Li, H. Hua, X. Q. Li, F. R. Xu, J. C. Pei, R. Qiao, H. B. You, H. Wang, Z. Y. Tian, K. A. Li, Y. L. Sun, H. N. Liu, J. Chen, J. Wu, J. Li, W. Jiang, C. Wen, B. Yang, Y. Liu, Y. Y. Yang, P. Ma, J. B. Ma, S. L. Jin, J. L. Han, and J. Lee, Phys. Rev. C 91, 024304 (2015).ADSCrossRefGoogle Scholar
  40. 40.
    V. V. Parkar, V. Jha, S. K. Pandit, S. Santra, and S. Kailas, Phys. Rev. C 87, 034602 (2013), arXiv: 1302.4581.ADSCrossRefGoogle Scholar
  41. 41.
    P. Descouvemont, Phys. Lett. B 772, 1 (2017), arXiv: 1706.06298.ADSCrossRefGoogle Scholar
  42. 42.
    T. J. Gooding, Nucl. Phys. 12, 241 (1959).CrossRefGoogle Scholar
  43. 43.
    X. F. Zhang, and D. Y. Pang, Chin. Phys. Lett. 31, 052401 (2014).ADSCrossRefGoogle Scholar
  44. 44.
    D. Y. Pang, W. M. Dean, and A. M. Mukhamedzhanov, Phys. Rev. C 91, 024611 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingChina
  2. 2.School of Physics and Nuclear Energy Engineering, Beijing Key Laboratory oof Advanced Nuclear Materials and PhysicsBeihang UniversityBeijingChina

Personalised recommendations