Discovery of a new nontoxic cuprate superconducting system Ga-Ba-Ca-Cu-O

  • Yue Zhang
  • Wenhao Liu
  • Jin Si
  • Xiyu ZhuEmail author
  • Chengping He
  • Haonan Zhao
  • Hai-Hu WenEmail author


Superconductivity is observed in a new nontoxic cuprate system Ga-Ba-Ca-Cu-O, with Tc = 82 K for GaBa2Ca5Cu6O14 + δ( 5 (Ga-1256) and Tc = 116 K probably for GaBa2Ca3Cu4O10+δ(Ga-1234) or GaBa2Ca2Cu3O8+δ (Ga-1223), respectively. All compounds are fabricated by solid state reaction method under high pressure and high temperature. Samples are characterized by resistivity, magnetization and X-ray diffraction (XRD) measurements. The temperature dependence of magnetization measured in both zero-field-cooled and field-cooled processes on one sample (S1) shows two superconducting transitions at about 82 K and 113 K. The estimated shielding fraction for the phase with Tc of 82 K is about 67%, while the fraction for another phase with Tc of 113 K is quite small. The XRD Rietveld refinement for S1 indicates two main phases existing in the sample, Ga-1256 with fraction of about 58% and non-superconducting Ca0.85CuO2 with fraction of about 42% respectively. Thus, we can conclude the superconducting phase with transition temperature of 82 K is due to Ga-1256. The resistivity measurement also confirms the superconductivity for S1, and the resistivity reaches zero at about 82 K. The temperature dependence of magnetization for another sample (S2) shows much higher superconducting shielding fraction for the phase with Tc of 116 K, which may be a promising prospective for the synthesis of Ga-1234 or Ga-1223 phase.


cuprates high pressure and high temperature superconductivity 


  1. 1.
    J. G. Bednorz, and K. A. Müller, Phys. B 64, 189 (1986).Google Scholar
  2. 2.
    M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
  3. 3.
    Z. X. Zhao, L. Chen, Q. Yang, Y. Huang, G. Chen, R. Tang, G. Liu, C. Cui, L. Chen, L. Wang, S. Guo, S. Lin, and J. Bi, Chin. Sci. Bull. 6, 412 (1987).Google Scholar
  4. 4.
    Z. Z. Sheng, and A. M. Hermann, Nature 332, 138 (1988).CrossRefGoogle Scholar
  5. 5.
    A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott, Nature 363, 56 (1993).CrossRefGoogle Scholar
  6. 6.
    L. Gao, Y. Y. Xue, F. Chen, Q. Xiong, R. L. Meng, D. Ramirez, C. W. Chu, J. H. Eggert, and H. K. Mao, Phys. Rev. B 50, 4260 (1994).CrossRefGoogle Scholar
  7. 7.
    J. M. Tarascon, W. R. McKinnon, P. Barboux, D. M. Hwang, B. G. Bagley, L. H. Greene, G. W. Hull, Y. LePage, N. Stoffel, and M. Giroud, Phys. Rev. B 38, 8885 (1988).CrossRefGoogle Scholar
  8. 8.
    Q. Li, M. Suenaga, T. Kaneko, K. Sato, and C. Simmon, Appl. Phys. Lett. 71, 1561 (1997).CrossRefGoogle Scholar
  9. 9.
    H. Kumakura, K. Togano, H. Maeda, J. Kase, and T. Morimoto, Appl. Phys. Lett. 58, 2830 (1991).CrossRefGoogle Scholar
  10. 10.
    N. Clayton, N. Musolino, E. Giannini, V. Garnier, and R. Flükiger, Supercond. Sci. Technol. 17, S563 (2004).CrossRefGoogle Scholar
  11. 11.
    A. M. Petrean, L. M. Paulius, W. K. Kwok, J. A. Fendrich, and G. W. Crabtree, Phys. Rev. Lett. 84, 5852 (2000).CrossRefGoogle Scholar
  12. 12.
    T. Nishizaki, T. Naito, and N. Kobayashi, Phys. Rev. B 58, 11169 (1998).CrossRefGoogle Scholar
  13. 13.
    Y. Zhang, W. Liu, X. Zhu, H. Zhao, Z. Hu, C. He, and H.-H. Wen, arXiv: 1805.05830.Google Scholar
  14. 14.
    M. Weigand, M. Eisterer, E. Giannini, and H. W. Weber, Phys. Rev. B 81, 014516 (2010).CrossRefGoogle Scholar
  15. 15.
    L. Civale, A. D. Marwick, M. W. McElfresh, T. K. Worthington, A. P. Malozemoff, F. H. Holtzberg, J. R. Thompson, and M. A. Kirk, Phys. Rev. Lett. 65, 1164 (1990).CrossRefGoogle Scholar
  16. 16.
    H. Kumakura, H. Kitaguchi, K. Togano, T. Kawashima, E. Takayama-Muromachi, S. Okayasu, and Y. Kazumata, IEEE Trans. Appl. Supercond. 5, 1399 (1995).CrossRefGoogle Scholar
  17. 17.
    H. M. Rietveld, J. Appl. Cryst. 2, 65 (1969).CrossRefGoogle Scholar
  18. 18.
    J. Rodriguez-Carvajal, Phys. B 192, 55 (1993).CrossRefGoogle Scholar
  19. 19.
    J. J. Capponi, E. M. Kopnin, S. M. Loureiro, E. V. Antipov, E. Gautier, C. Chaillout, B. Souletie, M. Brunner, J. L. Tholence, and M. Marezio, Phys. C 256, 1 (1996).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, National Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjingChina

Personalised recommendations