Advertisement

Localization of gravitino field on f(R)-thick branes

  • XiangNan Zhou
  • YunZhi Du
  • Hao Yu
  • YuXiao LiuEmail author
Article

Abstract

In this paper, we consider the localization of a five-dimensional gravitino field on f(R)-thick branes. We obtain the coupled chiral equations of the Kaluza-Klein (KK) modes of gravitinos with the gauge condition Ψz = 0. The chiral equations of a gravitino’s KK modes are found to be almost identical to those of the Dirac fermion. However, their chiralities are exactly opposite. The chiral KK modes of gravitinos could be localized in some types of f(R)-thick branes on introducing a coupling term. We investigate the localization of a gravitino on three types of f(R)-thick branes through a Yukawa-like coupling term with background scalar fields. It has been shown that all the KK modes of gravitinos cannot be localized in the pure geometric f(R)-thick branes by adding a five-dimensional gravitino mass term. However, for the f(R)-thick branes generated by one or two background scalar fields, only the left- or right-handed zero mode could be localized in the branes, and the massive KK resonant modes are the same for both left- and right-handed gravitinos despite their opposing chiralities. All these results are consistent with those of the five-dimensional Dirac fermion except their chiralities, which may be an important sign to distinguish the gravitino field and the Dirac fermion field.

Keywords

Kaluza-Klein modes localization gravitino field f(R)-thick brane 

References

  1. 1.
    K. Akama, Lect. Notes Phys. 176, 267 (1982), arXiv: hep-th/0001113.ADSCrossRefGoogle Scholar
  2. 2.
    V. A. Rubakov, and M. E. Shaposhnikov, Phys. Lett. B 125, 139 (1983).ADSCrossRefGoogle Scholar
  3. 3.
    N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998), arXiv: hep-ph/9803315.ADSCrossRefGoogle Scholar
  4. 4.
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 436, 257 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    L. Randall, and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    L. Randall, and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    N. Arkani-Hamed, S. Dimopoulos, N. Kaloper, and R. Sundrum, Phys. Lett. B 480, 193 (2000).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    J. E. Kim, B. Kyae, and H. M. Lee, Phys. Rev. Lett. 86, 4223 (2001).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Nussinov, and R. Shrock, Phys. Rev. Lett. 88, 171601 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    A. A. Pankov, and N. Paver, Phys. Rev. D 72, 035012 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 97, 171802 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    P. Dey, B. Mukhopadhyaya, and S. SenGupta, Phys. Rev. D 80, 055029 (2009), arXiv: 0904.1970.ADSCrossRefGoogle Scholar
  13. 13.
    I. P. Neupane, Phys. Rev. D 83, 086004 (2011), arXiv: 1011.6357.ADSCrossRefGoogle Scholar
  14. 14.
    S. Das, D. Maity, and S. SenGupta, J. High Energy Phys. 2008, 042 (2008), arXiv: 0711.1744.CrossRefGoogle Scholar
  15. 15.
    K. Yang, Y. X. Liu, Y. Zhong, X. L. Du, and S. W. Wei, Phys. Rev. D 86, 127502 (2012), arXiv: 1212.2735.ADSCrossRefGoogle Scholar
  16. 16.
    G. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B 484, 112 (2000).ADSCrossRefGoogle Scholar
  17. 17.
    G. D. Starkman, D. Stojkovic, and M. Trodden, Phys. Rev. Lett. 87, 231303 (2001).ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    T. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berl. Math. Phys. K. 1, 966 (1921).Google Scholar
  19. 19.
    O. Klein, Z. Physik 37, 895 (1926).ADSCrossRefGoogle Scholar
  20. 20.
    R. Gregory, V. A. Rubakov, and S. M. Sibiryakov, Phys. Rev. Lett. 84, 5928 (2000).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    N. Kaloper, J. March-Russell, G. D. Starkman, and M. Trodden, Phys. Rev. Lett. 85, 928 (2000).ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    A. Melfo, N. Pantoja, and A. Skirzewski, Phys. Rev. D 67, 105003 (2003).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    D. Bazeia, and A. R. Gomes, J. High Energy Phys. 2004, 012 (2004).CrossRefGoogle Scholar
  24. 24.
    A. Cardoso, K. Koyama, A. Mennim, S. S. Seahra, and D. Wands, Phys. Rev. D 75, 084002 (2007).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Y. X. Liu, Y. Zhong, Z. H. Zhao, and H. T. Li, J. High Energ. Phys. 2011, 135 (2011), arXiv: 1104.3188.CrossRefGoogle Scholar
  26. 26.
    Y. X. Liu, K. Yang, H. Guo, and Y. Zhong, Phys. Rev. D 85, 124053 (2012), arXiv: 1203.2349.ADSCrossRefGoogle Scholar
  27. 27.
    F. W. Chen, Y. X. Liu, Y. Zhong, Y. Q. Wang, and S. F. Wu, Phys. Rev. D 88, 104033 (2013), arXiv: 1201.5922.ADSCrossRefGoogle Scholar
  28. 28.
    D. Bazeia, A. S. Lobao Jr., and R. Menezes, Phys. Lett. B 743, 98 (2015), arXiv: 1502.04757.ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    H. Yu, Y. Zhong, B. M. Gu, and Y. X. Liu, Eur. Phys. J. C 76, 195 (2016), arXiv: 1506.06458.ADSCrossRefGoogle Scholar
  30. 30.
    S. Chang, J. Hisano, H. Nakano, N. Okada, and M. Yamaguchi, Phys. Rev. D 62, 084025 (2000).ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    T. Shiromizu, K. Maeda, and M. Sasaki, Phys. Rev. D 62, 024012 (2000).ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    A. Kehagias, and K. Tamvakis, Phys. Lett. B 504, 38 (2001).ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    C. Ringeval, P. Peter, and J. P. Uzan, Phys. Rev. D 65, 044016 (2002).ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    D. Maity, and S. SenGupta, Class. Quantum Grav. 21, 3379 (2004).ADSCrossRefGoogle Scholar
  35. 35.
    A. Chatterjee, and P. Majumdar, Phys. Rev. D 72, 066013 (2005).ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    A. Melfo, N. Pantoja, and J. D. Tempo, Phys. Rev. D 73, 044033 (2006).ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Y. X. Liu, L. Zhao, and Y. S. Duan, J. High Energy Phys. 2007, 097 (2007).CrossRefGoogle Scholar
  38. 38.
    R. Davies, D. P. George, and R. R. Volkas, Phys. Rev. D 77, 124038 (2008), arXiv: 0705.1584.ADSCrossRefGoogle Scholar
  39. 39.
    Y. X. Liu, J. Yang, Z. H. Zhao, C. E. Fu, and Y. S. Duan, Phys. Rev. D 80, 065019 (2009), arXiv: 0904.1785.ADSCrossRefGoogle Scholar
  40. 40.
    R. Guerrero, A. Melfo, N. Pantoja, and R. O. Rodriguez, Phys. Rev. D 81, 086004 (2010), arXiv: 0912.0463.ADSCrossRefGoogle Scholar
  41. 41.
    C. E. Fu, Y. X. Liu, K. Yang, and S. W. Wei, J. High Energ. Phys. 2012, 60 (2012), arXiv: 1207.3152.CrossRefGoogle Scholar
  42. 42.
    Q. Y. Xie, J. Yang, and L. Zhao, Phys. Rev. D 88, 105014 (2013), arXiv: 1310.4585.ADSCrossRefGoogle Scholar
  43. 43.
    Y. X. Liu, Z. G. Xu, F. W. Chen, and S. W. Wei, Phys. Rev. D 89, 086001 (2014), arXiv: 1312.4145.ADSCrossRefGoogle Scholar
  44. 44.
    Z. H. Zhao, Y. X. Liu, and Y. Zhong, Phys. Rev. D 90, 045031 (2014), arXiv: 1402.6480.ADSCrossRefGoogle Scholar
  45. 45.
    H. Guo, Q. Y. Xie, and C. E. Fu, Phys. Rev. D 92, 106007 (2015), arXiv: 1408.6155.ADSCrossRefGoogle Scholar
  46. 46.
    Y. Z. Du, L. Zhao, X. N. Zhou, Y. Zhong, and Y. X. Liu, Ann. Phys. 388, 69 (2018).ADSCrossRefGoogle Scholar
  47. 47.
    P. Q. Hung, and N. K. Tran, Phys. Rev. D 69, 064003 (2004).ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    H. Guo, A. Herrera-Aguilar, Y. X. Liu, D. Malagon-Morejon, and R. R. Mora-Luna, Phys. Rev. D 87, 095011 (2013), arXiv: 1103.2430.ADSCrossRefGoogle Scholar
  49. 49.
    I. Sahin, M. Koksal, S. C. Inan, A. A. Billur, B. Sahin, P. Tekta§, E. Alici, and R. Yildirim, Phys. Rev. D 91, 035017 (2015), arXiv: 1409.1796.ADSCrossRefGoogle Scholar
  50. 50.
    M. Bauer, C. Horner, and M. Neubert, J. High Energ. Phys. 2016, 94 (2016), arXiv: 1603.05978.CrossRefGoogle Scholar
  51. 51.
    C. A. S. Almeida, R. Casana, M. M. Ferreira, and A. R. Gomes, Phys. Rev. D 79, 125022 (2009), arXiv: 0901.3543.ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    Y. X. Liu, H. T. Li, Z. H. Zhao, J. X. Li, and J. R. Ren, J. High Energy Phys. 2009, 091 (2009), arXiv: 0909.2312.CrossRefGoogle Scholar
  53. 53.
    Q. Y. Xie, H. Guo, Z. H. Zhao, Y. Z. Du, and Y. P. Zhang, Class. Quant. Grav. 34, 055007 (2017), arXiv:.1510.033445.ADSCrossRefGoogle Scholar
  54. 54.
    R. R. Landim, G. Alencar, M. O. Tahim, and R. N. C. Filho, J. High Energ. Phys. 2011, 71 (2011), arXiv: 1105.5573.CrossRefGoogle Scholar
  55. 55.
    Y. Z. Du, L. Zhao, Y. Zhong, C. E. Fu, and H. Guo, Phys. Rev. D 88, 024009 (2013), arXiv: 1301.3204.ADSCrossRefGoogle Scholar
  56. 56.
    Y. P. Zhang, Y. Z. Du, W. D. Guo, and Y. X. Liu, Phys. Rev. D 93, 065042 (2016), arXiv: 1601.05852.ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    Z. G. Xu, Y. Zhong, H. Yu, and Y. X. Liu, Eur. Phys. J. C 75, 368 (2015), arXiv: 1405.6277.ADSCrossRefGoogle Scholar
  58. 58.
    E. J. Chun, H. B. Kim, and J. E. Kim, Phys. Rev. Lett. 72, 1956 (1994).ADSCrossRefGoogle Scholar
  59. 59.
    T. Moroi, arXiv: hep-ph/9503210.Google Scholar
  60. 60.
    F. D. Steffen, J. Cosmol. Astropart. Phys. 2006, 001 (2006).ADSCrossRefGoogle Scholar
  61. 61.
    J. L. Feng, M. Kamionkowski, and S. K. Lee, Phys. Rev. D 82, 015012 (2010), arXiv: 1004.4213.ADSCrossRefGoogle Scholar
  62. 62.
    K. G. Savvidy, and J. D. Vergados, Phys. Rev. D 87, 075013 (2013), arXiv: 1211.3214.ADSCrossRefGoogle Scholar
  63. 63.
    S. Shirai, and T. T. Yanagida, Phys. Lett. B 680, 351 (2009), arXiv: 0905.4034.ADSCrossRefGoogle Scholar
  64. 64.
    M. Y. Khlopov, A. Barrau, and J. Grain, Class. Quantum Grav. 23, 1875 (2006).ADSCrossRefGoogle Scholar
  65. 65.
    A. Yale, and R. B. Mann, Phys. Lett. B 673, 168 (2009), arXiv: 0808.2820.ADSMathSciNetCrossRefGoogle Scholar
  66. 66.
    P. Arnold, P. Szepietowski, and D. Vaman, Phys. Rev. D 89, 046001 (2014), arXiv: 1311.6409.ADSCrossRefGoogle Scholar
  67. 67.
    C.-H. Chen, H. T. Cho, A. S. Cornell, G. Harmsen, and W. Naylor, Chin. J. Phys. 53, 110101 (2015).Google Scholar
  68. 68.
    B. Bajc, and G. Gabadadze, Phys. Lett. B 474, 282 (2000).ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    I. Oda, Phys. Lett. B 508, 96 (2001).ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    T. Gherghetta, and A. Pomarol, Nucl. Phys. B 602, 3 (2001).ADSCrossRefGoogle Scholar
  71. 71.
    I. Oda, Prog. Theor. Phys. 105, 667 (2001).ADSCrossRefGoogle Scholar
  72. 72.
    J. A. L. Hewett, and D. Sadri, Phys. Rev. D 69, 015001 (2004).ADSCrossRefGoogle Scholar
  73. 73.
    H. M. Lee, and A. Papazoglou, Nucl. Phys. B 792, 166 (2008), arXiv: 0705.1157.ADSCrossRefGoogle Scholar
  74. 74.
    Y. Zhong, C. E. Fu, and Y. X. Liu, Sci. China-Phys. Mech. Astron. 61, 090411 (2018).CrossRefGoogle Scholar
  75. 75.
    S. W. Wei, Y. X. Liu, and C. E. Fu, Sci. China-Phys. Mech. Astron. 59, 640401 (2016).CrossRefGoogle Scholar
  76. 76.
    D. Z. He, J. F. Zhang, and X. Zhang, Sci. China-Phys. Mech. Astron. 60, 039511 (2017), arXiv: 1607.05643.ADSCrossRefGoogle Scholar
  77. 77.
    X. Zhang, Sci. China-Phys. Mech. Astron. 60, 050431 (2017), arXiv: 1702.04564.ADSCrossRefGoogle Scholar
  78. 78.
    T. P. Sotiriou, and V. Faraoni, Rev. Mod. Phys. 82, 451 (2010), arXiv: 0805.1726.ADSCrossRefGoogle Scholar
  79. 79.
    A. De Felice, and S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010), arXiv: 1002.4928.ADSCrossRefGoogle Scholar
  80. 80.
    S. Nojiri, and S. D. Odintsov, Phys. Rep. 505, 59 (2011), arXiv: 1011.0544.ADSMathSciNetCrossRefGoogle Scholar
  81. 81.
    S. Nojiri, and S. D. Odintsov, J. High Energy Phys. 2000, 049 (2000).CrossRefGoogle Scholar
  82. 82.
    S. Nojiri, S. D. Odintsov, and S. Ogushi, Phys. Rev. D 65, 023521 (2001).ADSCrossRefGoogle Scholar
  83. 83.
    M. Giovannini, Phys. Rev. D 65, 064008 (2002).ADSMathSciNetCrossRefGoogle Scholar
  84. 84.
    V. I. Afonso, D. Bazeia, R. Menezes, and A. Y. Petrov, Phys. Lett. B 658, 71 (2007), arXiv: 0710.3790.ADSMathSciNetCrossRefGoogle Scholar
  85. 85.
    V. Dzhunushaliev, V. Folomeev, B. Kleihaus, and J. Kunz, J. High Energ. Phys. 2010, 130 (2010), arXiv: 0912.2812.CrossRefGoogle Scholar
  86. 86.
    H. Liu, H. Lü, and Z. L. Wang, J. High Energ. Phys. 2012, 83 (2012), arXiv: 1111.6602.CrossRefGoogle Scholar
  87. 87.
    D. Bazeia, A. S. LLobao, L. Losano, R. Menezes, and G. J. Olmo, Phys. Rev. D 91, 124006 (2015), arXiv: 1505.06315.ADSMathSciNetCrossRefGoogle Scholar
  88. 88.
    Y. Zhong, Y. X. Liu, and K. Yang, Phys. Lett. B 699, 398 (2011), arXiv: 1010.3478.ADSCrossRefGoogle Scholar
  89. 89.
    Y. Zhong, and Y. X. Liu, Phys. Rev. D 88, 024017 (2013), arXiv: 1307.7639.ADSCrossRefGoogle Scholar
  90. 90.
    Y. Zhong, and Y. X. Liu, Eur. Phys. J. C 76, 321 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Physics and Information EngineeringShanxi Normal UniversityLinfenChina
  2. 2.Institute of Theoretical PhysicsDatong UniversityDatongChina
  3. 3.Research Center of Gravitation and Institute of Theoretical PhysicsLanzhou UniversityLanzhouChina

Personalised recommendations