Advertisement

Design strategy for ferroelectric-based polar metals with dimensionality-tunable electronic states

  • Chao Ma
  • KuiJuan JinEmail author
Article
  • 39 Downloads

Abstract

Since LiOsO3 was discovered, obtaining easy-accessible polar metals for research and applications has been challenging. In this paper, we present a multilayer design strategy, which is configured as ferroelectric layer/carrier reservoir layer/isolation layer/ substrate, for obtaining polar metals by electrostatically doping a strained ferroelectric material in a more effective way. In the proposed configuration, both 1 unit-cell thick BaTiO3 and PbTiO3 exhibited considerable Ti off-centering with various strains, which should extend the applicability of ferroelectric-based polar metals in ultra-thin devices. Moreover, engineered by the compressive strain and the BaTiO3 thickness, the design strategy effectively achieved polar metallicity and dimensionalitytunable electronic states associated with the modulation of highly anisotropic properties such as electrical and electronic thermal conductivity, which may be helpful for designing ultra-thin, ultrafast, and low-power switch devices.

Keywords

polar metal design strategy BaTiO3 highly anisotropic conductivity electrical conductivity electronic thermal conductivity 

Supplementary material

11433_2018_9245_MOESM1_ESM.doc (2.1 mb)
Design strategy for ferroelectric-based polar metals with the dimensionality-tunable electronic states

References

  1. 1.
    P. W. Anderson, and E. I. Blount, Phys. Rev. Lett. 14, 217 (1965).ADSCrossRefGoogle Scholar
  2. 2.
    Y. Shi, Y. Guo, X. Wang, A. J. Princep, D. Khalyavin, P. Manuel, Y. Michiue, A. Sato, K. Tsuda, S. Yu, M. Arai, Y. Shirako, M. Akaogi, N. Wang, K. Yamaura, and A. T. Boothroyd, Nat. Mater. 12, 1024 (2013), arXiv: 1509.01849.ADSCrossRefGoogle Scholar
  3. 3.
    G. Giovannetti, and M. Capone, Phys. Rev. 90, 195113 (2014), arXiv: 1404.7705.ADSCrossRefGoogle Scholar
  4. 4.
    D. Puggioni, and J. M. Rondinelli, Nat. Commun. 5, 3432 (2014), arXiv: 1310.1148.ADSCrossRefGoogle Scholar
  5. 5.
    H. Sim, and B. G. Kim, Phys. Rev. 89, 201107(R) (2014), arXiv: 1311.4139.ADSCrossRefGoogle Scholar
  6. 6.
    H. J. Xiang, Phys. Rev. 90, 094108 (2014), arXiv: 1312.4225.CrossRefGoogle Scholar
  7. 7.
    C. He, Z. Ma, B. Z. Sun, Q. Li, and K. Wu, Comput. Mater. Sci. 105, 11 (2015).CrossRefGoogle Scholar
  8. 8.
    H. M. Liu, Y. P. Du, Y. L. Xie, J. M. Liu, C. G. Duan, and X. Wan, Phys. Rev. 91, 064104 (2015), arXiv: 1409.4953.CrossRefGoogle Scholar
  9. 9.
    D. Puggioni, G. Giovannetti, M. Capone, and J. M. Rondinelli, Phys. Rev. Lett. 115, 087202 (2015), arXiv: 1503.01948.ADSCrossRefGoogle Scholar
  10. 10.
    N. A. Benedek, and T. Birol, J. Mater. Chem. C 4, 4000 (2016).CrossRefGoogle Scholar
  11. 11.
    A. Filippetti, V. Fiorentini, F. Ricci, P. Delugas, and J. Íñiguez, Nat. Commun. 7, 11211 (2016), arXiv: 1511.09312.ADSCrossRefGoogle Scholar
  12. 12.
    X. He, and K. Jin, Phys. Rev. 94, 224107 (2016), arXiv: 1603.07418.CrossRefGoogle Scholar
  13. 13.
    F. Jin, A. Zhang, J. Ji, K. Liu, L. Wang, Y. Shi, Y. Tian, X. Ma, and Q. Zhang, Phys. Rev. 93, 064303 (2016), arXiv: 1703.02701.CrossRefGoogle Scholar
  14. 14.
    T. H. Kim, D. Puggioni, Y. Yuan, L. Xie, H. Zhou, N. Campbell, P. J. Ryan, Y. Choi, J. W. Kim, J. R. Patzner, S. Ryu, J. P. Podkaminer, J. Irwin, Y. Ma, C. J. Fennie, M. S. Rzchowski, X. Q. Pan, V. Gopalan, J. M. Rondinelli, and C. B. Eom, Natur. 533, 68 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    I. Lo Vecchio, G. Giovannetti, M. Autore, P. Di Pietro, A. Perucchi, J. He, K. Yamaura, M. Capone, and S. Lupi, Phys. Rev. 93, 161113(R) (2016), arXiv: 1509.01785.CrossRefGoogle Scholar
  16. 16.
    J. Gu, K. Jin, C. Ma, Q. Zhang, L. Gu, C. Ge, J. Wang, C. Wang, H. Guo, and G. Yang, Phys. Rev. 96, 165206 (2017), arXiv: 1706.04855.CrossRefGoogle Scholar
  17. 17.
    X. Jing, W. Xu, C. Yang, J. Feng, A. Zhang, Y. Zeng, M. Qin, M. Zeng, Z. Fan, J. Gao, X. Gao, G. Zhou, X. Lu, and J. M. Liu, Appl. Phys. Lett. 110, 182903 (2017).ADSCrossRefGoogle Scholar
  18. 18.
    C. Ma, X. He, and K. Jin, Phys. Rev. 96, 035140 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    K. S. Takahashi, Y. Matsubara, M. S. Bahramy, N. Ogawa, D. Hashizume, Y. Tokura, and M. Kawasaki, Sci. Rep. 7, 4631 (2017).ADSCrossRefGoogle Scholar
  20. 20.
    C. Ma, K. Jin, C. Ge, and G. Yang, Phys. Rev. 97, 115103 (2018).CrossRefGoogle Scholar
  21. 21.
    V. M. Edelstein, J. Phys.–Condens. Matter 8, 339 (1996).ADSCrossRefGoogle Scholar
  22. 22.
    E. Bauer, H. Kaldarar, R. Lackner, H. Michor, W. Steiner, E. W. Scheidt, A. Galatanu, F. Marabelli, T. Wazumi, K. Kumagai, and M. Feuerbacher, Phys. Rev. 76, 014528 (2007).CrossRefGoogle Scholar
  23. 23.
    E. Bauer, G. Rogl, X. Q. Chen, R. T. Khan, H. Michor, G. Hilscher, E. Royanian, K. Kumagai, D. Z. Li, Y. Y. Li, R. Podloucky, and P. Rogl, Phys. Rev. 82, 064511 (2010), arXiv: 1007.0420.CrossRefGoogle Scholar
  24. 24.
    V. M. Edelstein, Phys. Rev. Lett. 75, 2004 (1995).ADSCrossRefGoogle Scholar
  25. 25.
    V. M. Edelstein, Phys. Rev. 72, 172501 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    V. P. Mineev, and Y. Yoshioka, Phys. Rev. 81, 094525 (2010), arXiv: 1001.2113.CrossRefGoogle Scholar
  27. 27.
    V. M. Edelstein, Phys. Rev. 83, 113109 (2011).CrossRefGoogle Scholar
  28. 28.
    K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, Scienc. 306, 1005 (2004).ADSCrossRefGoogle Scholar
  29. 29.
    L. Liu, H. Guo, H. Lü, S. Dai, B. Cheng, and Z. Chen, J. Appl. Phys. 97, 054102 (2005).ADSCrossRefGoogle Scholar
  30. 30.
    Y. Shao, R. A. Hughes, A. Dabkowski, G. Radtke, W. H. Gong, J. S. Preston, and G. A. Botton, Appl. Phys. Lett. 93, 192114 (2008).ADSCrossRefGoogle Scholar
  31. 31.
    Y. Iwazaki, T. Suzuki, Y. Mizuno, and S. Tsuneyuki, Phys. Rev. 86, 214103 (2012).CrossRefGoogle Scholar
  32. 32.
    Y. Wang, X. Liu, J. D. Burton, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett. 109, 247601 (2012), arXiv: 1208.5830.ADSCrossRefGoogle Scholar
  33. 33.
    K. Page, T. Kolodiazhnyi, T. Proffen, A. K. Cheetham, and R. Seshadri, Phys. Rev. Lett. 101, 205502 (2008), arXiv: 0808.1308.ADSCrossRefGoogle Scholar
  34. 34.
    S. Raghavan, J. Y. Zhang, O. F. Shoron, and S. Stemmer, Phys. Rev. Lett. 117, 037602 (2016).ADSCrossRefGoogle Scholar
  35. 35.
    T. Kolodiazhnyi, M. Tachibana, H. Kawaji, J. Hwang, and E. Takayama–Muromachi, Phys. Rev. Lett. 104, 147602 (2010).ADSCrossRefGoogle Scholar
  36. 36.
    I. K. Jeong, S. Lee, S. Y. Jeong, C. J. Won, N. Hur, and A. Llobet, Phys. Rev. 84, 064125 (2011).CrossRefGoogle Scholar
  37. 37.
    D. Nagano, H. Funakubo, K. Shinozaki, and N. Mizutani, Appl. Phys. Lett. 72, 2017 (1998).ADSCrossRefGoogle Scholar
  38. 38.
    M. Nasir Khan, H. T. Kim, T. Kusawake, H. Kudo, K. Ohshima, and H. Uwe, J. Appl. Phys. 86, 2307 (1999).ADSCrossRefGoogle Scholar
  39. 39.
    N. Lemée, C. Dubourdieu, G. Delabouglise, J. P. Sénateur, and F. Laroudie, J. Cryst. Growth 235, 347 (2002).ADSCrossRefGoogle Scholar
  40. 40.
    J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008), arXiv: 0707.2088.ADSCrossRefGoogle Scholar
  41. 41.
    G. Kresse, and J. Furthmüller, Phys. Rev. 54, 11169 (1996).CrossRefGoogle Scholar
  42. 42.
    P. E. Blöchl, Phys. Rev. 50, 17953 (1994).CrossRefGoogle Scholar
  43. 43.
    G. Kresse, and D. Joubert, Phys. Rev. 59, 1758 (1999).ADSCrossRefGoogle Scholar
  44. 44.
    A. A. Mostofi, J. R. Yates, G. Pizzi, Y. S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys. Commun. 185, 2309 (2014).ADSCrossRefGoogle Scholar
  45. 45.
    N. W. Ashcroft, and N. D. Mermin, Solid State Physics (Thomson Learning, Inc., Stamford, 1976).Google Scholar
  46. 46.
    G. Pizzi, D. Volja, B. Kozinsky, M. Fornari, and N. Marzari, Comput. Phys. Commun. 185, 422 (2014), arXiv: 1305.1587.ADSCrossRefGoogle Scholar
  47. 47.
    K. Momma, and F. Izumi, J Appl Cryst. 41, 653 (2008).CrossRefGoogle Scholar
  48. 48.
    A. Ohtomo, and H. Y. Hwang, Natur. 427, 423 (2004).ADSCrossRefGoogle Scholar
  49. 49.
    G. Gerra, A. K. Tagantsev, N. Setter, and K. Parlinski, Phys. Rev. Lett. 96, 107603 (2006).ADSCrossRefGoogle Scholar
  50. 50.
    C. Ge, K. J. Jin, C. Wang, H. B. Lu, C. Wang, and G. Z. Yang, Appl. Phys. Lett. 99, 063509 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations