Explanations of the DAMPE high energy electron/positron spectrum in the dark matter annihilation and pulsar scenarios

  • BingBing Wang
  • XiaoJun Bi
  • SuJie Lin
  • PengFei YinEmail author


Many studies have shown that either the nearby astrophysical source or dark matter (DM) annihilation/decay can be used to explain the excess of high energy cosmic ray (CR) e±, which is detected by many experiments, such as PAMELA and AMS-02. Recently, the dark matter particle explorer (DAMPE) collaboration has reported its first result of the total CR e± spectrum from 25 GeV to 4.6 TeV with high precision. In this work, we study the DM annihilation and pulsar interpretations of this result. We show that the leptonic DM annihilation channels to τ+τ, 4μ, 4τ, and mixed charged lepton final states can well explain the DAMPE e± spectrum. We also find that the mixed charged leptons channel would lead to a sharp drop structure at ~ TeV. However, the ordinary DM explanations have been almost excluded by the constraints from the observations of gamma-ray and CMB, unless some exotic DM models are introduced. In the pulsar scenario, we analyze 21 nearby known pulsars and assume that one of them dominantly contributes to the high energy CR e± spectrum. Involving the constraint from the Fermi-LAT observation of the e± anisotropy, we find that two pulsars could explain the DAMPE e± spectrum. Our results show that it is difficult to discriminate between the DM annihilation and single pulsar explanations of high energy e± with the current DAMPE result.


cosmic rays dark matter pulsars 


  1. 1.
    O. Adriani, et al. (PAMELA Collaboration), Nature 458, 607 (2009), arXiv: 0810.4995.ADSGoogle Scholar
  2. 2.
    M. Aguilar, et al. (AMS Collaboration), Phys. Rev. Lett. 113, 121102 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    L. Bergström, T. Bringmann, and J. Edsjö, hys. Rev. D 78, 103520 (2008), arXiv: 0808.3725.ADSCrossRefGoogle Scholar
  4. 4.
    V. Barger, W. Y. Keung, D. Marfatia, and G. Shaughnessy, Phys. Lett. B 672, 141 (2009), arXiv: 0809.0162.ADSCrossRefGoogle Scholar
  5. 5.
    M. Cirelli, M. Kadastik, M. Raidal, and A. Strumia, Nucl. Phys. B 813, 1 (2009), arXiv: 0809.2409ADSCrossRefGoogle Scholar
  6. 5a.
    M. Cirelli, M. Kadastik, M. Raidal, and A. Strumia, Nucl. Phys. B 873, 530 (2013).ADSCrossRefGoogle Scholar
  7. 6.
    P. Yin, Q. Yuan, J. Liu, J. Zhang, X. Bi, S. Zhu, and X. Zhang, Phys. Rev. D 79, 023512 (2009), arXiv: 0811.0176.ADSCrossRefGoogle Scholar
  8. 7.
    J. Zhang, X. J. Bi, J. Liu, S. M. Liu, P. F. Yin, Q. Yuan, and S. H. Zhu, Phys. Rev. D 80, 023007 (2009), arXiv: 0812.0522.ADSCrossRefGoogle Scholar
  9. 8.
    N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, Phys. Rev. D 79, 015014 (2009), arXiv: 0810.0713.ADSCrossRefGoogle Scholar
  10. 9.
    M. Pospelov, and A. Ritz, Phys. Lett. B 671, 391 (2009), arXiv: 0810.1502.ADSCrossRefGoogle Scholar
  11. 10.
    H. Yüksel, M. D. Kistler, and T. Stanev, Phys. Rev. Lett. 103, 051101 (2009), arXiv: 0810.2784.ADSCrossRefGoogle Scholar
  12. 11.
    D. Hooper, P. Blasi, and P. D. Serpico, J. Cosmol. Astropart. Phys. 2009, 025 (2009), arXiv: 0810.1527.CrossRefGoogle Scholar
  13. 12.
    S. Profumo, Open Phys. 10, 1 (2012), arXiv: 0812.4457.ADSCrossRefGoogle Scholar
  14. 13.
    D. Malyshev, I. Cholis, and J. Gelfand, Phys. Rev. D 80, 063005 (2009), arXiv: 0903.1310.ADSCrossRefGoogle Scholar
  15. 14.
    P. Blasi, Phys. Rev. Lett. 103, 051104 (2009), arXiv: 0903.2794.ADSCrossRefGoogle Scholar
  16. 15.
    H. B. Hu, Q. Yuan, B. Wang, C. Fan, J. L. Zhang, and X. J. Bi, Astrophys. J. 700, L170 (2009), arXiv: 0901.1520.ADSCrossRefGoogle Scholar
  17. 16.
    S. J. Lin, Q. Yuan, and X. J. Bi, Phys. Rev. D 91, 063508 (2015), arXiv: 1409.6248.ADSCrossRefGoogle Scholar
  18. 17.
    G. Ambrosi, et al. (DAMPE Collaboration), Nature 552, 63 (2017), arXiv: 1711.10981.Google Scholar
  19. 18.
    Q. Yuan, L. Feng, P.-F. Yin Y.-Z. Fan, X.-J. Bi, M.-Y. Cui, T.-K. Dong, Y.-Q. Guo, K. Fang, H.-B. Hu, X. Y. Huang, S.-J. Lei, X. Li, S.-J. Lin, H. Liu, P.-X. Ma, W.-X. Peng, R. Qiao, Z.-Q. Shen, M. Su, Y.-F. Wei, Z.-L. Xu, C.n Yue, J.-J. Zang, C. Zhang, X. M. Zhang, Y.-P. Zhang, Y.-J. Zhang, and Y.-L. Zhang, arXiv: 1711.10989.Google Scholar
  20. 19.
    K. Fang, X. J. Bi, and P. F. Yin, Astrophys. J. 854, 57 (2018), arXiv: 1711.10996.ADSCrossRefGoogle Scholar
  21. 20.
    Y.-Z. Fan, W.-C. Huang, M. Spinrath, Y.-L. S. Tsai, and Q. Yuan, arXiv: 1711.10995.Google Scholar
  22. 21.
    G. H. Duan, L. Feng, F. Wang, L. Wu, J. M. Yang, and R. Zheng, J. High Energ. Phys. 2018, 107 (2018), arXiv: 1711.11012.CrossRefGoogle Scholar
  23. 22.
    P. Athron, C. Balazs, A. Fowlie, and Y. Zhang, J. High Energ. Phys. 2018, 121 (2018), arXiv: 1711.11376.CrossRefGoogle Scholar
  24. 23.
    J.-J Cao, L. Feng, X.-F. Guo, L.-L. Shang, F. Wang, and P.-W. Wu, arXiv: 1711.11452.Google Scholar
  25. 24.
    X.-W. Liu, and Z.-W. Liu, arXiv: 1711.11579.Google Scholar
  26. 25.
    X.-J. Huang, Y.-L. Wu, W.-H. Zhang, and Y.-F. Zhou, arXiv: 1712.00005.Google Scholar
  27. 26.
    J.-S. Niu, T.-J. Li, R. Ding, B. Zhu, H.-F. Xue, and Y. Wang, arXiv: 1712.00372.Google Scholar
  28. 27.
    Y. Gao, and Y.-Z. Ma, arXiv: 1712.00370.Google Scholar
  29. 28.
    F.-W. Yang, M. Su, and Y. Zhao, arXiv: 1712.01724.Google Scholar
  30. 29.
    J.-J. Cao, L Feng, X.-F. Guo, L.-L. Shang, F. Wang, P.-W. Wu, and L. Zu, Eur. Phys. J. C 78, 198 (2018).ADSCrossRefGoogle Scholar
  31. 30.
    K. Ghorbani, and P. H. Ghorbani, arXiv: 1712.01239.Google Scholar
  32. 31.
    T. Nomura, and H. Okada, arXiv: 1712.00941.Google Scholar
  33. 32.
    P.-H. Gu, arXiv: 1712.00922.Google Scholar
  34. 33.
    R.-L. Zhu, and Y. Zhang, arXiv: 1712.01143.Google Scholar
  35. 34.
    T. Li, N. Okada, and Q. Shafi, Phys. Lett. B 779, 130 (2018), arXiv: 1712.00869.ADSCrossRefGoogle Scholar
  36. 35.
    C.-H. Chen, C.-W. Chiang, and T. Nomura, arXiv: 1712.00793.Google Scholar
  37. 36.
    H.-B. Jin, B. Yue, X. Zhang, and X. Chen, arXiv: 1712.00362.Google Scholar
  38. 37.
    G. H. Duan, X.-G. He, L. Wu, and J. M. Yang, arXiv: 1711.11563.Google Scholar
  39. 38.
    L. Zu, C. Zhang, L. Feng, Q. Yuan, and Y.-Z. Fan, arXiv: 1711.11052.Google Scholar
  40. 39.
    R. Ding, Z.-L. Han, L. Feng, and B. Zhu, arXiv: 1712.02021.Google Scholar
  41. 40.
    P.-H. Gu, arXiv: 1711.11333.Google Scholar
  42. 41.
    W. Chao, and Q. Yuan, arXiv: 1711.11182.Google Scholar
  43. 42.
    Y.-L. Tang, L. Wu, M. Zhang, and R. Zheng, arXiv: 1711.11058.Google Scholar
  44. 43.
    P. H. Gu, and X. G. He, Phys. Lett. B 778, 292 (2018), arXiv: 1711.11000.ADSCrossRefGoogle Scholar
  45. 44.
    G. Liu, F. Wang, W. Wang, and J. M. Yang, Chin. Phys. C 42, 035101 (2018), arXiv: 1712.02381.ADSCrossRefGoogle Scholar
  46. 45.
    S.-F. Ge, and H.-J. He, arXiv: 1712.02744.Google Scholar
  47. 46.
    R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs, Astron. J. 129, 1993 (2005).ADSCrossRefGoogle Scholar
  48. 47.
    V. L. Ginzburg, and S. I. Syrovatsky, Prog. Theor. Phys. Suppl. 20, 1 (1961).ADSCrossRefGoogle Scholar
  49. 48.
    V. L. Ginzburg, and V. S. Berezinskiĭ, Astrophysics of Cosmic Rays (Elsevier, Amsterdam, 1990).Google Scholar
  50. 49.
    A. W. Strong, I. V. Moskalenko, T. A. Porter, G. Jóhannesson, E. Orlando, and S. W. Digel, arXiv: 0907.0559.Google Scholar
  51. 50.
    E. S. Seo, and V. S. Ptuskin, Astrophys. J. 431, 705 (1994).ADSCrossRefGoogle Scholar
  52. 51.
    Q. Yuan, S. J. Lin, K. Fang, and X. J. Bi, Phys. Rev. D 95, 083007 (2017), arXiv: 1701.06149.ADSCrossRefGoogle Scholar
  53. 52.
    R. Trotta, G. Jóhannesson, I. V. Moskalenko, T. A. Porter, R. Ruiz de Austri, and A. W. Strong, Astrophys. J. 729, 106 (2011), arXiv: 1011.0037.ADSCrossRefGoogle Scholar
  54. 53.
    I. V. Moskalenko, and A. W. Strong, Astrophys. J. 493, 694 (1998).ADSCrossRefGoogle Scholar
  55. 54.
    G. Bernard, T. Delahaye, Y. Y. Keum, W. Liu, P. Salati, and R. Taillet, Astron. Astrophys. 555, A48 (2013), arXiv: 1207.4670.CrossRefGoogle Scholar
  56. 55.
    V. Ptuskin, V. Zirakashvili, and E. S. Seo, Astrophys. J. 763, 47 (2013), arXiv: 1212.0381.ADSCrossRefGoogle Scholar
  57. 56.
    K. Fang, B. B. Wang, X. J. Bi, S. J. Lin, and P. F. Yin, Astrophys. J. 836, 172 (2017), arXiv: 1611.10292.ADSCrossRefGoogle Scholar
  58. 57.
    J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 490, 493 (1997).ADSCrossRefGoogle Scholar
  59. 58.
    F. Nesti, and P. Salucci, J. Cosmol. Astropart. Phys. 2013, 016 (2013), arXiv: 1304.5127.CrossRefGoogle Scholar
  60. 59.
    Y. Sofue, Publ Astron Soc Jpn 64, 75 (2012), arXiv: 1110.4431.ADSCrossRefGoogle Scholar
  61. 60.
    M. Weber, and W. de Boer, Astron. Astrophys. 509, A25 (2010), arXiv: 0910.4272.ADSCrossRefGoogle Scholar
  62. 61.
    M. Cirelli, G. Corcella, A. Hektor, G. Hütsi, M. Kadastik, P. Panci, M. Raidal, F. Sala, and A. Strumia, J. Cosmol. Astropart. Phys. 2011, 051 (2011), arXiv: 1012.4515; J. Cosmol. Astropart. Phys. 2012, E01 (2012).CrossRefGoogle Scholar
  63. 62.
    F. A. Aharonian, A. M. Atoyan, and H. J. Volk, Astron. Astrophys. 294, L41 (1995).ADSGoogle Scholar
  64. 63.
    P. F. Yin, Z. H. Yu, Q. Yuan, and X. J. Bi, Phys. Rev. D 88, 023001 (2013), arXiv: 1304.4128.ADSCrossRefGoogle Scholar
  65. 64.
    J. Feng, and H. H. Zhang, Eur. Phys. J. C 76, 229 (2016), arXiv: 1504.03312.ADSCrossRefGoogle Scholar
  66. 65.
    A. M. Atoyan, F. A. Aharonian, and H. J. Völk, Phys. Rev. D 52, 3265 (1995).ADSCrossRefGoogle Scholar
  67. 66.
    T. Delahaye, J. Lavalle, R. Lineros, F. Donato, and N. Fornengo, Astron. Astrophys. 524, A51 (2010), arXiv: 1002.1910.ADSCrossRefGoogle Scholar
  68. 67.
    L. Accardo, et al. (AMS Collaboration), Phys. Rev. Lett. 113, 121101 (2014).ADSCrossRefGoogle Scholar
  69. 68.
    L. Bergström, Rep. Prog. Phys. 63, 793 (2000).ADSCrossRefGoogle Scholar
  70. 69.
    G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279 (2005).ADSCrossRefGoogle Scholar
  71. 70.
    L. Bergström, New J. Phys. 11, 105006 (2009), arXiv: 0903.4849.ADSCrossRefGoogle Scholar
  72. 71.
    E. Komatsu, J. Dunkley, M. R. Nolta, C. L. Bennett, B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M. Limon, L. Page, D. N. Spergel, M. Halpern, R. S. Hill, A. Kogut, S. S. Meyer, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright, Astrophys. J. Suppl. Ser. 180, 330 (2009), arXiv: 0803.0547.ADSCrossRefGoogle Scholar
  73. 72.
    P. A. R. Ade, et al. (Planck Collaboration), Astron. Astrophys. 594, A13 (2016), arXiv: 1502.01589.CrossRefGoogle Scholar
  74. 73.
    T. R. Slatyer, Phys. Rev. D 93, 023527 (2016), arXiv: 1506.03811.ADSCrossRefGoogle Scholar
  75. 74.
    M. Ackermann, et al. (The Fermi-LAT Collaboration), Phys. Rev. Lett. 115, 231301 (2015), arXiv: 1503.02641.ADSCrossRefGoogle Scholar
  76. 75.
    M. Ackermann, et al. (The Fermi-LAT Collaboration), Astrophys. J. 761, 91 (2012), arXiv: 1205.6474.ADSGoogle Scholar
  77. 76.
    A. Albert, et al. (The Fermi-LAT and DES Collaborations), Astrophys. J. 834, 110 (2017), arXiv: 1611.03184.ADSCrossRefGoogle Scholar
  78. 77.
    Y. Bai, J. Berger, and S. Lu, arXiv: 1706.09974.Google Scholar
  79. 78.
    Q. F. Xiang, X. J. Bi, S. J. Lin, and P. F. Yin, Phys. Lett. B 773, 448 (2017), arXiv: 1707.09313.ADSCrossRefGoogle Scholar
  80. 79.
    C.-S. Shen, and C.-Y. Mao, Astrophys. Lett. 9, 169 (1971).ADSGoogle Scholar
  81. 80.
    T. Kobayashi, Y. Komori, K. Yoshida, and J. Nishimura, Astrophys. J. 601, 340 (2004).ADSCrossRefGoogle Scholar
  82. 81.
    G. Di Bernardo, C. Evoli, D. Gaggero, D. Grasso, L. Maccione, and M. N. Mazziotta, Astropart. Phys. 34, 528 (2011), arXiv: 1010.0174.ADSCrossRefGoogle Scholar
  83. 82.
    S. Manconi, M. D. Mauro, and F. Donato, J. Cosmol. Astropart. Phys. 2017, 006 (2017), arXiv: 1611.06237.CrossRefGoogle Scholar
  84. 83.
    M. Ackermann et al. (Fermi LAT Collaboration), Phys. Rev. D 82, 092004 (2010), arXiv: 1008.3999.ADSGoogle Scholar
  85. 84.
    S. Abdollahi, et al. (Fermi-LAT Collaboration), Phys. Rev. Lett. 118, 091103 (2017), arXiv: 1703.01073.ADSCrossRefGoogle Scholar
  86. 85.
    M. Aguilar, et al. (AMS Collaboration), Phys. Rev. Lett. 110, 141102 (2013).ADSCrossRefGoogle Scholar
  87. 86.
    G. La Vacca, and AMS-02 Collaboration, arXiv: 1612.08957.Google Scholar
  88. 87.
    A. U. Abeysekara, et al. (HAWC Collaboration), Science 358, 911 (2017), arXiv: 1711.06223.ADSGoogle Scholar
  89. 88.
    D. Hooper, I. Cholis, T. Linden, and K. Fang, Phys. Rev. D 96, 103013 (2017), arXiv: 1702.08436.ADSCrossRefGoogle Scholar
  90. 89.
    K. Fang, X. J. Bi, P. F. Yin, and Q. Yuan, arXiv: 1803.02640.Google Scholar
  91. 90.
    S. Profumo, J. Reynoso-Cordova, N. Kaaz, and M. Silverman, Phys. Rev. D 97, 123008 (2018), arXiv: 1803.09731.ADSCrossRefGoogle Scholar
  92. 91.
    R. Schlickeiser, Cosmic Ray Astrophysics (Springer Science & Business Media, Berlin, 2002).CrossRefGoogle Scholar
  93. 92.
    R. Schlickeiser, and J. Ruppel, New J. Phys. 12, 033044 (2010), arXiv: 0908.2183.ADSCrossRefGoogle Scholar
  94. 93.
    D. Khangulyan, F. A. Aharonian, and S. R. Kelner, Astrophys. J. 783, 100 (2014), arXiv: 1310.7971.ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • BingBing Wang
    • 1
    • 2
  • XiaoJun Bi
    • 1
  • SuJie Lin
    • 1
  • PengFei Yin
    • 1
    Email author
  1. 1.Key Laboratory of Particle Astrophysics, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations