Advertisement

An overview of healthcare monitoring by flexible electronics

  • JianQiao Hu
  • Rui LiEmail author
  • Yuan Liu
  • YeWang SuEmail author
Invited Review

Abstract

Flexible electronics integrated with stretchable/bendable structures and various microsensors that monitor the temperature, pressure, sweat, bioelectricity, body hydration, etc., have a wide range of applications in the human healthcare sector. The science underlying this technology draws from many research areas, such as information technology, materials science, and structural mechanics, to efficiently and accurately monitor technology for various signals. In this paper, we make a classification and comb to the designs, materials, structures and functions of numerous flexible electronics for signal monitoring in the human healthcare sector. Some perspectives in this field are discussed in the concluding remarks.

Keywords

flexible electronics stretchable electronics signal monitoring human healthcare 

References

  1. 1.
    X. Xu, M. Davanco, X. Qi, and S. R. Forrest, Org. Electron. 9, 1122 (2008).Google Scholar
  2. 2.
    I. Jung, G. Shin, V. Malyarchuk, J. S. Ha, and J. A. Rogers, Appl. Phys. Lett. 96, 021110 (2010).ADSGoogle Scholar
  3. 3.
    S. Wagner, S. P. Lacour, J. Jones, P. I. Hsu, J. C. Sturm, T. Li, and Z. Suo, Phys. E–Low–dimensional Syst. NanoStruct. 25, 326 (2004).ADSGoogle Scholar
  4. 4.
    M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, and Z. Bao, Adv. Mater. 25, 5997 (2013).Google Scholar
  5. 5.
    D. H. Kim, S. Wang, H. Keum, R. Ghaffari, Y. S. Kim, H. Tao, B. Panilaitis, M. Li, Z. Kang, F. Omenetto, Y. Huang, and J. A. Rogers, Smal. 8, 3263 (2012).Google Scholar
  6. 6.
    T. Song, H. Cheng, H. Choi, J. H. Lee, H. Han, D. H. Lee, D. S. Yoo, M. S. Kwon, J. M. Choi, S. G. Doo, H. Chang, J. Xiao, Y. Huang, W. I. Park, Y. C. Chung, H. Kim, J. A. Rogers, and U. Paik, ACS Nan. 6, 303 (2012).Google Scholar
  7. 7.
    Biosensors Market (Electrochemical, Optical, Piezoelectric & Thermistor)—Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2012–2018, Market Report (Transparency Market Research, 2013).Google Scholar
  8. 8.
    S. R. Forrest, Natur. 428, 911 (2004).ADSGoogle Scholar
  9. 9.
    H. Kim, E. Brueckner, J. Song, Y. Li, S. Kim, C. Lu, J. Sulkin, K. Choquette, Y. Huang, R. G. Nuzzo, and J. A. Rogers, Proc. Natl. Acad. Sci. US. 108, 10072 (2011).ADSGoogle Scholar
  10. 10.
    Q. Ma, and Y. Zhang, J. Appl. Mech. 83, 111008 (2016).ADSGoogle Scholar
  11. 11.
    Y. Su, Z. Liu, S. Kim, J. Wu, Y. Huang, and J. A. Rogers, Int. J. Solids Struct. 49, 3416 (2012).Google Scholar
  12. 12.
    Y. Su, S. Wang, Y. A. Huang, H. Luan, W. Dong, J. A. Fan, Q. Yang, J. A. Rogers, and Y. Huang, Smal. 11, 367 (2015).Google Scholar
  13. 13.
    H. Liu, R. Y. Xue, X. C. Ping, J. Q. Hu, H. P. Wu, H. Zhang, X. Guo, R. Li, Y. L. Chen, and Y. W. Su, Sci. China–Phys. Mech. Astron. 2018, doi:10.1007/s11433–018–9238–2.Google Scholar
  14. 14.
    C. Pailler–Mattei, S. Bec, and H. Zahouani, Med. Eng. Phys. 30, 599 (2008).Google Scholar
  15. 15.
    M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer–Gogonea, S. Bauer, and T. Someya, Natur. 499, 458 (2013).ADSGoogle Scholar
  16. 16.
    D. H. Kim, J. Viventi, J. J. Amsden, J. Xiao, L. Vigeland, Y. S. Kim, J. A. Blanco, B. Panilaitis, E. S. Frechette, D. Contreras, D. L. Kaplan, F. G. Omenetto, Y. Huang, K. C. Hwang, M. R. Zakin, B. Litt, and J. A. Rogers, Nat. Mate. 9, 511 (2010).Google Scholar
  17. 17.
    H. Araki, J. Kim, S. Zhang, A. Banks, K. E. Crawford, X. Sheng, P. Gutruf, Y. Shi, R. M. Pielak, and J. A. Rogers, Adv. Funct. Mater. 27, 1604465 (2017).Google Scholar
  18. 18.
    K. H. Choi, M. Zubair, and H. W. Dang, Jpn. J. Appl. Phys. 53, 05HB02 (2014).Google Scholar
  19. 19.
    C. Y. Lee, C. H. Lin, and Y. M. Lo, Sensor. 11, 3706 (2011).Google Scholar
  20. 20.
    Q. Tan, Z. Ren, T. Cai, C. Li, T. Zheng, S. Li, and J. Xiong, J. Sens. 2015, 1 (2015).Google Scholar
  21. 21.
    E. Chiappini, S. Sollai, R. Longhi, L. Morandini, A. Laghi, C. E. Osio, M. Persiani, S. Lonati, R. Picchi, F. Bonsignori, F. Mannelli, L. Galli, and M. de Martino, J. Clinical Nursing 20, 1311 (2011).Google Scholar
  22. 22.
    T. Q. Trung, S. Ramasundaram, B. U. Hwang, and N. E. Lee, Adv. Mater. 28, 502 (2016).Google Scholar
  23. 23.
    L. Tian, Y. Li, R. C. Webb, S. Krishnan, Z. Bian, J. Song, X. Ning, K. Crawford, J. Kurniawan, A. Bonifas, J. Ma, Y. Liu, X. Xie, J. Chen, Y. Liu, Z. Shi, T. Wu, R. Ning, D. Li, S. Sinha, D. G. Cahill, Y. Huang, and J. A. Rogers, Adv. Funct. Mater. 27, 1701282 (2017).Google Scholar
  24. 24.
    R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y. S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, and J. A. Rogers, Nat. Mater. 12, 938 (2013).ADSGoogle Scholar
  25. 25.
    Y. Chen, B. Lu, Y. Chen, and X. Feng, Sci. Rep. 5, 11505 (2015).ADSGoogle Scholar
  26. 26.
    Y. Zhang, R. Chad Webb, H. Luo, Y. Xue, J. Kurniawan, N. H. Cho, S. Krishnan, Y. Li, Y. Huang, and J. A. Rogers, Adv. Healthcare Mater. 5, 119 (2016).Google Scholar
  27. 27.
    Z. Wu, C. Li, J. Hartings, S. Ghosh, R. Narayan, and C. Ahn, J. Micromech. Microeng. 27, 025001 (2017).ADSGoogle Scholar
  28. 28.
    I. Graz, M. Krause, S. Bauer–Gogonea, S. Bauer, S. P. Lacour, B. Ploss, M. Zirkl, B. Stadlober, and S. Wagner, J. Appl. Phys. 106, 034503 (2009).ADSGoogle Scholar
  29. 29.
    S. K. Mahadeva, S. Yun, and J. Kim, Sens.s Actuators A–Phys. 165, 194 (2011).Google Scholar
  30. 30.
    J. Yang, D. Wei, L. Tang, X. Song, W. Luo, J. Chu, T. Gao, H. Shi, and C. Du, RSC Adv. 5, 25609 (2015).Google Scholar
  31. 31.
    W. P. Shih, L. C. Tsao, C. W. Lee, M. Y. Cheng, C. Chang, Y. J. Yang, and K. C. Fan, Sensor. 10, 3597 (2010).Google Scholar
  32. 32.
    T. Yokota, Y. Inoue, Y. Terakawa, J. Reeder, M. Kaltenbrunner, T. Ware, K. Yang, K. Mabuchi, T. Murakawa, M. Sekino, W. Voit, T. Sekitani, and T. Someya, Proc. Natl. Acad. Sci. US. 112, 14533 (2015).ADSGoogle Scholar
  33. 33.
    A. Koh, S. R. Gutbrod, J. D. Meyers, C. Lu, R. C. Webb, G. Shin, Y. Li, S. K. Kang, Y. Huang, I. R. Efimov, and J. A. Rogers, Adv. Healthcare Mater. 5, 373 (2016).Google Scholar
  34. 34.
    X. Ren, K. Pei, B. Peng, Z. Zhang, Z. Wang, X. Wang, and P. K. L. Chan, Adv. Mater. 28, 4832 (2016).Google Scholar
  35. 35.
    X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan, and Z. L. Wang, Adv. Sci. 2, 1500169 (2015).Google Scholar
  36. 36.
    Y. Zang, F. Zhang, C. Di, and D. Zhu, Mater. Horiz. 2, 140 (2015).Google Scholar
  37. 37.
    J. M. Cannata, D. Vilkomerson, T. Chilipka, H. C. Yang, S. Han, V. L. Rowe, and F. A. Weaver, J. Acoust. Soc. Am. 128, 2304 (2010).ADSGoogle Scholar
  38. 38.
    A. T. Sepúlveda, F. Fachin, R. G. Villoria, B. L. Wardle, J. C. Viana, A. J. Pontes, and L. A. Rocha, Procedia Eng. 25, 140 (2011).Google Scholar
  39. 39.
    K. F. Lei, K. F. Lee, and M. Y. Lee, MicroElectron. Eng. 99, 1 (2012).Google Scholar
  40. 40.
    H. C. Lim, B. Schulkin, M. J. Pulickal, S. Liu, R. Petrova, G. Thomas, S. Wagner, K. Sidhu, and J. F. Federici, Sens. Actuators APhys. 119, 332 (2005).Google Scholar
  41. 41.
    C. X. Liu, and J. W. Choi, Microsyst. Technol. 18, 365 (2011).Google Scholar
  42. 42.
    X. Liu, Y. Zhu, M. W. Nomani, X. Wen, T. Y. Hsia, and G. Koley, J. Micromech. Microeng. 23, 025022 (2013).ADSGoogle Scholar
  43. 43.
    B. R. Burg, T. Helbling, C. Hierold, and D. Poulikakos, J. Appl. Phys. 109, 064310 (2011).ADSGoogle Scholar
  44. 44.
    M. Akiyama, Y. Morofuji, T. Kamohara, K. Nishikubo, M. Tsubai, O. Fukuda, and N. Ueno, J. Appl. Phys. 100, 114318 (2006).ADSGoogle Scholar
  45. 45.
    W. Choi, J. Lee, Y. Kyoung Yoo, S. Kang, J. Kim, and J. Hoon Lee, Appl. Phys. Lett. 104, 123701 (2014).ADSGoogle Scholar
  46. 46.
    A. T. Sepúlveda, R. G. D. Villoria, J. C. Viana, A. J. Pontes, B. L. Wardle, and L. A. Rocha, Procedia Eng. 47, 1177 (2012).Google Scholar
  47. 47.
    C. Dagdeviren, Y. Su, P. Joe, R. Yona, Y. Liu, Y. S. Kim, Y. A. Huang, A. R. Damadoran, J. Xia, L. W. Martin, Y. Huang, and J. A. Rogers, Nat. Commun. 5, 4496 (2014).ADSGoogle Scholar
  48. 48.
    J. H. Cho, S. H. Ha, and J. M. Kim, Nanotechnolog. 29, 155501 (2018).ADSGoogle Scholar
  49. 49.
    Y. Jiang, Z. Liu, N. Matsuhisa, D. Qi, W. R. Leow, H. Yang, J. Yu, G. Chen, Y. Liu, C. Wan, Z. Liu, and X. Chen, Adv. Mater. 30, 1706589 (2018).Google Scholar
  50. 50.
    M. Y. Cheng, X. H. Huang, C. W. Ma, and Y. J. Yang, J. Micromech. Microeng. 19, 115001 (2009).ADSGoogle Scholar
  51. 51.
    M. Leineweber, G. Pelz, M. Schmidt, H. Kappert, and G. Zimmer, Sens. Actuators A–Phys. 84, 236 (2000).Google Scholar
  52. 52.
    S. C. B. Mannsfeld, B. C. K. Tee, R. M. Stoltenberg, C. V. H. H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, Nat. Mate. 9, 859 (2010).Google Scholar
  53. 53.
    S. Wan, H. Bi, Y. Zhou, X. Xie, S. Su, K. Yin, and L. Sun, Carbo. 114, 209 (2017).Google Scholar
  54. 54.
    Y. Liu, L. Q. Tao, D. Y. Wang, T. Y. Zhang, Y. Yang, and T. L. Ren, Appl. Phys. Lett. 110, 123508 (2017).ADSGoogle Scholar
  55. 55.
    S. E. Zhu, M. Krishna Ghatkesar, C. Zhang, and G. C. A. M. Janssen, Appl. Phys. Lett. 102, 161904 (2013).ADSGoogle Scholar
  56. 56.
    R. J. Grow, Q. Wang, J. Cao, D. Wang, and H. Dai, Appl. Phys. Lett. 86, 093104 (2005).ADSGoogle Scholar
  57. 57.
    B. Zhu, Z. Niu, H. Wang, W. R. Leow, H. Wang, Y. Li, L. Zheng, J. Wei, F. Huo, and X. Chen, Smal. 10, 3625 (2014).Google Scholar
  58. 58.
    H. Tian, Y. Shu, X. F. Wang, M. A. Mohammad, Z. Bie, Q. Y. Xie, C. Li, W. T. Mi, Y. Yang, and T. L. Ren, Sci. Rep. 5, 8603 (2015).Google Scholar
  59. 59.
    C. T. Lee, and Y. S. Chiu, Appl. Phys. Lett. 106, 073502 (2015).ADSGoogle Scholar
  60. 60.
    C. L. Choong, M. B. Shim, B. S. Lee, S. Jeon, D. S. Ko, T. H. Kang, J. Bae, S. H. Lee, K. E. Byun, J. Im, Y. J. Jeong, C. E. Park, J. J. Park, and U. I. Chung, Adv. Mater. 26, 3451 (2014).Google Scholar
  61. 61.
    C. M. Boutry, A. Nguyen, Q. O. Lawal, A. Chortos, S. Rondeau–Gagné, and Z. Bao, Adv. Mater. 27, 6954 (2015).Google Scholar
  62. 62.
    J. Kim, M. Lee, H. J. Shim, R. Ghaffari, H. R. Cho, D. Son, Y. H. Jung, M. Soh, C. Choi, S. Jung, K. Chu, D. Jeon, S. T. Lee, J. H. Kim, S. H. Choi, T. Hyeon, and D. H. Kim, Nat. Commun. 5, 5747 (2014).ADSGoogle Scholar
  63. 63.
    Y. Zang, F. Zhang, D. Huang, X. Gao, C. A. Di, and D. Zhu, Nat. Commun. 6, 6269 (2015).ADSGoogle Scholar
  64. 64.
    D. Kang, P. V. Pikhitsa, Y. W. Choi, C. Lee, S. S. Shin, L. Piao, B. Park, K. Y. Suh, T. I. Kim, and M. Choi, Natur. 516, 222 (2014).ADSGoogle Scholar
  65. 65.
    S. Jung, J. Lee, T. Hyeon, M. Lee, and D. H. Kim, Adv. Mater. 26, 6329 (2014).Google Scholar
  66. 66.
    C. Pang, J. H. Koo, A. Nguyen, J. M. Caves, M. G. Kim, A. Chortos, K. Kim, P. J. Wang, J. B. H. Tok, and Z. Bao, Adv. Mater. 27, 634 (2015).Google Scholar
  67. 67.
    D. Carrera, B. Rossi, D. Zambon, P. Fragneto, and G. Boracchi, in ECG Monitoring in Wearable Devices by Sparse Models: Proceedings of European Conference on Machine Learning and Knowledge Discovery in Databases, Riva del Garda, Italy, 19–23 September, 2016, 9853, pp. 145–160, doi: 10.1007/978–3–319–46131–1_21.Google Scholar
  68. 68.
    J. Y. Baek, J. H. An, J. M. Choi, K. S. Park, and S. H. Lee, Sens.s Actuators A–Phys. 143, 423 (2008).Google Scholar
  69. 69.
    P. S. Pandian, K. Mohanavelu, K. P. Safeer, T. M. Kotresh, D. T. Shakunthala, P. Gopal, and V. C. Padaki, Med. Eng. Phys. 30, 466 (2008).Google Scholar
  70. 70.
    S. M. Lee, K. S. Sim, K. K. Kim, Y. G. Lim, and K. S. Park, Med. Biol. Eng. Comput. 48, 447 (2010).Google Scholar
  71. 71.
    H. C. Jung, J. H. Moon, D. H. Baek, J. H. Lee, Y. Y. Choi, J. S. Hong, and S. H. Lee, IEEE Trans. Biomed. Eng. 59, 1472 (2012).Google Scholar
  72. 72.
    X. F. Pu, L. Wan, H. Zhang, Y. J. Qin, and Z. L. Hong, J. Semicond. 34, 055002 (2013).Google Scholar
  73. 73.
    Z. Liu, and X. Liu, J. Text. Sci. Tech. 01, 110 (2015).Google Scholar
  74. 74.
    C. Lou, R. Li, Z. Li, T. Liang, Z. Wei, M. Run, X. Yan, and X. Liu, Sensor. 16, 1833 (2016).Google Scholar
  75. 75.
    J. S. Lee, J. Heo, W. K. Lee, Y. G. Lim, Y. H. Kim, and K. S. Park, Sensor. 14, 14732 (2014).Google Scholar
  76. 76.
    Y. Meng, Z. Li, and J. Chen, Microsyst. Technol. 22, 2027 (2015).Google Scholar
  77. 77.
    B. Liu, Z. Luo, W. Zhang, Q. Tu, and X. Jin, Sens. Actuators A–Phys. 247, 459 (2016).Google Scholar
  78. 78.
    M. K. Yapici, T. Alkhidir, Y. A. Samad, and K. Liao, Sens. Actuators B–Chem. 221, 1469 (2015).Google Scholar
  79. 79.
    S. M. Lee, H. J. Byeon, J. H. Lee, D. H. Baek, K. H. Lee, J. S. Hong, and S. H. Lee, Sci. Rep. 4, 6074 (2014).ADSGoogle Scholar
  80. 80.
    S. Imani, A. J. Bandodkar, A. M. V. Mohan, R. Kumar, S. Yu, J. Wang, and P. P. Mercier, Nat. Commun. 7, 11650 (2016).ADSGoogle Scholar
  81. 81.
    F. Cai, C. Yi, S. Liu, Y. Wang, L. Liu, X. Liu, X. Xu, and L. Wang, Biosens. Bioelectron. 77, 907 (2016).Google Scholar
  82. 82.
    Y. Khan, M. Garg, Q. Gui, M. Schadt, A. Gaikwad, D. Han, N. A. D. Yamamoto, P. Hart, R. Welte, W. Wilson, S. Czarnecki, M. Poliks, Z. Jin, K. Ghose, F. Egitto, J. Turner, and A. C. Arias, Adv. Funct. Mater. 26, 8764 (2016).Google Scholar
  83. 83.
    R. Barea, L. Boquete, S. Ortega, E. López, and J. M. Rodríguez–Ascariz, Expert Syst. Appl. 39, 2677 (2012).Google Scholar
  84. 84.
    H. L. Peng, H. L. Jing–Quan Liu, H. C. Tian, Y. Z. Dong, B. Yang, X. Chen, and C. S. Yang, Sens. Actuators B–Chem. 226, 349 (2016).Google Scholar
  85. 85.
    D. H. Kim, N. Lu, R. Ma, Y. S. Kim, R. H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H. J. Chung, H. Keum, M. McCormick, P. Liu, Y. W. Zhang, F. G. Omenetto, Y. Huang, T. Coleman, and J. A. Rogers, Scienc. 333, 838 (2011).ADSGoogle Scholar
  86. 86.
    X. Guo, W. Pei, Y. Wang, Y. Chen, H. Zhang, X. Wu, X. Yang, H. Chen, Y. Liu, and R. Liu, BioMed. Signal Processing Contro. 30, 98 (2016).Google Scholar
  87. 87.
    B. Xu, A. Akhtar, Y. Liu, H. Chen, W. H. Yeo, S. I. Park, B. Boyce, H. Kim, J. Yu, H. Y. Lai, S. Jung, Y. Zhou, J. Kim, S. Cho, Y. Huang, T. Bretl, and J. A. Rogers, Adv. Mater. 28, 4462 (2016).Google Scholar
  88. 88.
    J. W. Jeong, W. H. Yeo, A. Akhtar, J. J. S. Norton, Y. J. Kwack, S. Li, S. Y. Jung, Y. Su, W. Lee, J. Xia, H. Cheng, Y. Huang, W. S. Choi, T. Bretl, and J. A. Rogers, Adv. Mater. 25, 6839 (2013).Google Scholar
  89. 89.
    H. Stein, and K. Firestone, Seminars Fetal Neonatal Med. 19, 60 (2014).Google Scholar
  90. 90.
    T. Allsop, T. Earthrowl–Gould, D. J. Webb, and I. Bennion, J. Biomed. Opt. 8, 552 (2003).ADSGoogle Scholar
  91. 91.
    D. E. Becker, and A. B. Casabianca, Anesthesia Prog. 56, 14 (2009).Google Scholar
  92. 92.
    J. De jonckheere, F. Narbonneau, L.T. D'Angelo, J. Witt, B. Paquet, D. Kinet, K. Kreber, and R. Logier, in FBG–based smart textiles for continuous monitoring of respiratory movements for healthcare applications: Proceedings of 12th IEEE International Conference o ne–Health Networking Applications and Services (Healthcom), Lyon, France, 1–3 July 2010, pp. 277–282, doi:10.1109/ HEALTH.2010.5556557.Google Scholar
  93. 93.
    W. Y. Chang, C. C. Huang, C. C. Chen, C. C. Chang, and C. L. Yang, Sensor. 14, 22021 (2014).Google Scholar
  94. 94.
    P. Jiang, S. Zhao, and R. Zhu, Sensor. 15, 31738 (2015).Google Scholar
  95. 95.
    Z. Liu, S. Zhang, Y. M. Jin, H. Ouyang, Y. Zou, X. X. Wang, L. X. Xie, and Z. Li, Semicond. Sci. Technol. 32, 064004 (2017).ADSGoogle Scholar
  96. 96.
    T. Ono, H. Takegawa, T. Ageishi, M. Takashina, H. Numasaki, M. Matsumoto, and T. Teshima, Phys. Med. Biol. 56, 6279 (2011).Google Scholar
  97. 97.
    M. Krehel, M. Schmid, R. M. Rossi, L. F. Boesel, G. L. Bona, and L. J. Scherer, Sensor. 14, 13088 (2014).Google Scholar
  98. 98.
    S. T. A. Hamdani, and A. Fernando, Sensor. 15, 7742 (2015).Google Scholar
  99. 99.
    P. Janik, M. A. Janik, and Z. Wróbel, Sens. Actuators A–Phys. 239, 79 (2016).Google Scholar
  100. 100.
    A. Nag, S. C. Mukhopadhyay, and J. Kosel, Sens. Actuators A–Phys. 251, 148 (2016).Google Scholar
  101. 101.
    P. Xiao, L. I. Ciortea, H. Singh, E. P. Berg, and R. E. Imhof, J. Phys.–Conf. Ser. 214, 012008 (2010).Google Scholar
  102. 102.
    R. C. Webb, R. M. Pielak, P. Bastien, J. Ayers, J. Niittynen, J. Kurniawan, M. Manco, A. Lin, N. H. Cho, V. Malyrchuk, G. Balooch, and J. A. Rogers, PLoS ONE 10, e0118131 (2015).Google Scholar
  103. 103.
    H. Tagami, M. Ohi, K. Iwatsuki, Y. Kanamaru, M. Yamada, and B. Ichijo, J. Invest. Dermatology 75, 500 (1980).Google Scholar
  104. 104.
    P. Clarys, A. O. Barel, and B. Gabard, Skin Res. Tech. 5, 14 (1999).Google Scholar
  105. 105.
    S. I. Alekseev, O. V. Gordiienko, and M. C. Ziskin, Bioelectromagnetic. 29, 340 (2008).Google Scholar
  106. 106.
    T. Yamamoto, and Y. Yamamoto, Med. Biol. Engng. 14, 151 (1976).Google Scholar
  107. 107.
    R. L. Gunter, W. D. Delinger, T. L. Porter, R. Stewart, and J. Reed, Med. Eng. Phys. 27, 215 (2005).Google Scholar
  108. 108.
    R. Stewart, J. Reed, J. Zhong, K. Morton, and T. L. Porter, Med. Eng. Phys. 29, 1084 (2007).Google Scholar
  109. 109.
    X. Huang, W. H. Yeo, Y. Liu, and J. A. Rogers, Biointerphase. 7, 52 (2012).Google Scholar
  110. 110.
    Y. Zhou, H. Han, H. P. P. Naw, A. V. Lammy, C. H. Goh, S. Boujday, and T. W. J. Steele, Mater. Des. 90, 1181 (2016).Google Scholar
  111. 111.
    X. Huang, Y. Liu, H. Cheng, W. J. Shin, J. A. Fan, Z. Liu, C. J. Lu, G. W. Kong, K. Chen, D. Patnaik, S. H. Lee, S. Hage–Ali, Y. Huang, and J. A. Rogers, Adv. Funct. Mater. 24, 3846 (2014).Google Scholar
  112. 112.
    S. Yao, A. Myers, A. Malhotra, F. Lin, A. Bozkurt, J. F. Muth, and Y. Zhu, Adv. Healthcare Mater. 6, 1601159 (2017).Google Scholar
  113. 113.
    S. Krishnan, Y. Shi, R. C. Webb, Y. Ma, P. Bastien, K. E. Crawford, A. Wang, X. Feng, M. Manco, J. Kurniawan, E. Tir, Y. Huang, G. Balooch, R. M. Pielak, and J. A. Rogers, Microsyst. Nanoeng. 3, 17014 (2017).Google Scholar
  114. 114.
    H. Cheng, Y. Zhang, X. Huang, J. A. Rogers, and Y. Huang, Sens. Actuators A–Phys. 203, 149 (2013).Google Scholar
  115. 115.
    B. Schazmann, D. Morris, C. Slater, S. Beirne, C. Fay, R. Reuveny, N. Moyna, and D. Diamond, Anal. Method. 2, 342 (2010).Google Scholar
  116. 116.
    M. Ngoepe, Y. E. Choonara, C. Tyagi, L. K. Tomar, L. C. du Toit, P. Kumar, V. M. K. Ndesendo, and V. Pillay, Sensor. 13, 7680 (2013).Google Scholar
  117. 117.
    A. J. Bandodkar, D. Molinnus, O. Mirza, T. Guinovart, J. R. Windmiller, G. Valdés–Ramírez, F. J. Andrade, M. J. Schöning, and J. Wang, Biosens. Bioelectron. 54, 603 (2014).Google Scholar
  118. 118.
    J. T. J. Huang, F. M. Leweke, D. Oxley, L. Wang, N. Harris, D. Koethe, C. W. Gerth, B. M. Nolden, S. Gross, D. Schreiber, B. Reed, and S. Bahn, PLoS Med. 3, e428 (2006).Google Scholar
  119. 119.
    D. T. Wong, J. Am. Dental Association 137, 313 (2006).ADSGoogle Scholar
  120. 120.
    B. S. Kwak, H. O. Kim, J. H. Kim, S. Lee, and H. I. Jung, Biosens. Bioelectron. 35, 484 (2012).Google Scholar
  121. 121.
    M. Parrilla, R. Cánovas, I. Jeerapan, F. J. Andrade, and J. Wang, Adv. Healthcare Mater. 5, 996 (2016).Google Scholar
  122. 122.
    A. Cazalé, W. Sant, F. Ginot, J. C. Launay, G. Savourey, F. Revol–Cavalier, J. M. Lagarde, D. Heinry, J. Launay, and P. Temple–Boyer, Sens. Actuators B–Chem. 225, 1 (2016).Google Scholar
  123. 123.
    T. Guinovart, A. J. Bandodkar, J. R. Windmiller, F. J. Andrade, and J. Wang, Analys. 138, 7031 (2013).ADSGoogle Scholar
  124. 124.
    P. Labroo, and Y. Cui, Biosens. Bioelectron. 41, 852 (2013).Google Scholar
  125. 125.
    E. L. Tur–García, F. Davis, S. D. Collyer, J. L. Holmes, H. Barr, and S. P. J. Higson, Sens. Actuators B–Chem. 242, 502 (2017).Google Scholar
  126. 126.
    V. A. T. Dam, M. A. G. Zevenbergen, and R. van Schaijk, Procedia Eng. 120, 237 (2015).Google Scholar
  127. 127.
    H. Kudo, T. Sawada, E. Kazawa, H. Yoshida, Y. Iwasaki, and K. Mitsubayashi, Biosens. Bioelectron. 22, 558 (2006).Google Scholar
  128. 128.
    M. Schaefer, M. Schellenberg, U. Merle, K. H. Weiss, and W. Stremmel, BMC Gastroentero. 8, 1 (2008).Google Scholar
  129. 129.
    P. J. Derbyshire, H. Barr, F. Davis, and S. P. J. Higson, J. Physiol. Sci. 62, 429 (2012).Google Scholar
  130. 130.
    S. M. Shirreffs, and R. J. Maughan, J. Appl. Physiol. 82, 336 (1997).Google Scholar
  131. 131.
    J. Choi, Y. Xue, W. Xia, T. R. Ray, J. T. Reeder, A. J. Bandodkar, D. Kang, S. Xu, Y. Huang, and J. A. Rogers, Lab Chi. 17, 2572 (2017).Google Scholar
  132. 132.
    J. Choi, D. Kang, S. Han, S. B. Kim, and J. A. Rogers, Adv. Healthcare Mater. 6, 1601355 (2017).Google Scholar
  133. 133.
    M. Caldara, C. Colleoni, E. Guido, V. Re, and G. Rosace, Sens. Actuators B–Chem. 222, 213 (2016).Google Scholar
  134. 134.
    S. Coyle, S. King–Tong Lau, N. Moyna, D. O’Gorman, D. Diamond, F. Di Francesco, D. Costanzo, P. Salvo, M. G. Trivella, D. E. De Rossi, N. Taccini, R. Paradiso, J. A. Porchet, A. Ridolfi, J. Luprano, C. Chuzel, T. Lanier, F. Revol–Cavalier, S. Schoumacker, V. Mourier, I. Chartier, R. Convert, H. De–Moncuit, and C. Bini, IEEE Trans. Inform. Technol. Biomed. 14, 364 (2010).Google Scholar
  135. 135.
    H. Lee, T. K. Choi, Y. B. Lee, H. R. Cho, R. Ghaffari, L. Wang, H. J. Choi, T. D. Chung, N. Lu, T. Hyeon, S. H. Choi, and D. H. Kim, Nat. Nanotech. 11, 566 (2016).ADSGoogle Scholar
  136. 136.
    W. Gao, S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. Chen, A. Peck, H. M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D. H. Lien, G. A. Brooks, R. W. Davis, and A. Javey, Natur. 529, 509 (2016).ADSGoogle Scholar
  137. 137.
    W. Gao, H. Y. Y. Nyein, Z. Shahpar, H. M. Fahad, K. Chen, S. Emaminejad, Y. Gao, L. C. Tai, H. Ota, E. Wu, J. Bullock, Y. Zeng, D. H. Lien, and A. Javey, ACS Sens. 1, 866 (2016).Google Scholar
  138. 138.
    X. Huang, Y. Liu, K. Chen, W. J. Shin, C. J. Lu, G. W. Kong, D. Patnaik, S. H. Lee, J. F. Cortes, and J. A. Rogers, Smal. 10, 3083 (2014).Google Scholar
  139. 139.
    K. Chen, R. He, X. Luo, P. Qin, L. Tan, Y. Tang, and Z. Yang, Biosens. Bioelectron. 94, 609 (2017).Google Scholar
  140. 140.
    D. M. Kim, S. J. Cho, C. H. Cho, K. B. Kim, M. Y. Kim, and Y. B. Shim, Biosens. Bioelectron. 79, 165 (2016).Google Scholar
  141. 141.
    P. Salvo, N. Calisi, B. Melai, B. Cortigiani, M. Mannini, A. Caneschi, G. Lorenzetti, C. Paoletti, T. Lomonaco, A. Paolicchi, I. Scataglini, V. Dini, M. Romanelli, R. Fuoco, and F. Di Francesco, Biosens. Bioelectron. 91, 870 (2017).Google Scholar
  142. 142.
    H. Lee, C. Song, Y. S. Hong, M. S. Kim, H. R. Cho, T. Kang, K. Shin, S. H. Choi, T. Hyeon, and D. H. Kim, Sci. Adv. 3, e1601314 (2017).ADSGoogle Scholar
  143. 143.
    S. Anastasova, B. Crewther, P. Bembnowicz, V. Curto, H. M. Ip, B. Rosa, and G. Z. Yang, Biosens. Bioelectron. 93, 139 (2017).Google Scholar
  144. 144.
    X. Wang, Y. Gu, Z. Xiong, Z. Cui, and T. Zhang, Adv. Mater. 26, 1336 (2014).ADSGoogle Scholar
  145. 145.
    Y. Gao, H. Ota, E. W. Schaler, K. Chen, A. Zhao, W. Gao, H. M. Fahad, Y. Leng, A. Zheng, F. Xiong, C. Zhang, L. C. Tai, P. Zhao, R. S. Fearing, and A. Javey, Adv. Mater. 29, 1701985 (2017).Google Scholar
  146. 146.
    J. Kim, P. Gutruf, A. M. Chiarelli, S. Y. Heo, K. Cho, Z. Xie, A. Banks, S. Han, K. I. Jang, J. W. Lee, K. T. Lee, X. Feng, Y. Huang, M. Fabiani, G. Gratton, U. Paik, and J. A. Rogers, Adv. Funct. Mater. 27, 1604373 (2017).Google Scholar
  147. 147.
    J. K. Song, D. Son, J. Kim, Y. J. Yoo, G. J. Lee, L. Wang, M. K. Choi, J. Yang, M. Lee, K. Do, J. H. Koo, N. Lu, J. H. Kim, T. Hyeon, Y. M. Song, and D. H. Kim, Adv. Funct. Mater. 27, 1605286 (2017).Google Scholar
  148. 148.
    R. Li, H. Cheng, Y. Su, S. W. Hwang, L. Yin, H. Tao, M. A. Brenckle, D. H. Kim, F. G. Omenetto, J. A. Rogers, and Y. Huang, Adv. Funct. Mater. 23, 3106 (2013).Google Scholar
  149. 149.
    S. W. Hwang, S. K. Kang, X. Huang, M. A. Brenckle, F. G. Omenetto, and J. A. Rogers, Adv. Mater. 27, 47 (2015).Google Scholar
  150. 150.
    S. K. Kang, S. W. Hwang, S. Yu, J. H. Seo, E. A. Corbin, J. Shin, D. S. Wie, R. Bashir, Z. Ma, and J. A. Rogers, Adv. Funct. Mater. 25, 1789 (2015).Google Scholar
  151. 151.
    S. W. Hwang, H. Tao, D. H. Kim, H. Cheng, J. K. Song, E. Rill, M. A. Brenckle, B. Panilaitis, S. M. Won, Y. S. Kim, Y. M. Song, K. J. Yu, A. Ameen, R. Li, Y. Su, M. Yang, D. L. Kaplan, M. R. Zakin, M. J. Slepian, Y. Huang, F. G. Omenetto, and J. A. Rogers, Scienc. 337, 1640 (2012).ADSGoogle Scholar
  152. 152.
    C. Dagdeviren, S. W. Hwang, Y. Su, S. Kim, H. Cheng, O. Gur, R. Haney, F. G. Omenetto, Y. Huang, and J. A. Rogers, Smal. 9, 3398 (2013).Google Scholar
  153. 153.
    S. W. Hwang, D. H. Kim, H. Tao, T. Kim, S. Kim, K. J. Yu, B. Panilaitis, J. W. Jeong, J. K. Song, F. G. Omenetto, and J. A. Rogers, Adv. Funct. Mater. 23, 4087 (2013).Google Scholar
  154. 154.
    S. W. Hwang, X. Huang, J. H. Seo, J. K. Song, S. Kim, S. Hage–Ali, H. J. Chung, H. Tao, F. G. Omenetto, Z. Ma, and J. A. Rogers, Adv. Mater. 25, 3526 (2013).Google Scholar
  155. 155.
    C. H. Lee, S. K. Kang, G. A. Salvatore, Y. Ma, B. H. Kim, Y. Jiang, J. S. Kim, L. Yan, D. S. Wie, A. Banks, S. J. Oh, X. Feng, Y. Huang, G. Troester, and J. A. Rogers, Adv. Funct. Mater. 25, 5100 (2015).Google Scholar
  156. 156.
    D. H. Kim, R. Ghaffari, N. Lu, S. Wang, S. P. Lee, H. Keum, R. D'Angelo, L. Klinker, Y. Su, C. Lu, Y. S. Kim, A. Ameen, Y. Li, Y. Zhang, B. de Graff, Y. Y. Hsu, Z. Liu, J. Ruskin, L. Xu, C. Lu, F. G. Omenetto, Y. Huang, M. Mansour, M. J. Slepian, and J. A. Rogers, Proc. Natl. Acad. Sci. US. 109, 19910 (2012).ADSGoogle Scholar
  157. 157.
    T. Lei, M. Guan, J. Liu, H. C. Lin, R. Pfattner, L. Shaw, A. F. McGuire, T. C. Huang, L. Shao, K. T. Cheng, J. B. H. Tok, and Z. Bao, Proc. Natl. Acad. Sci. US. 114, 5107 (2017).Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Nonlinear Mechanics, Institute of MechanicsChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational MechanicsDalian University of TechnologyDalianChina
  3. 3.Applied Mechanics Laboratory, School of Aerospace EngineeringTsinghua UniversityBeijingChina
  4. 4.School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijingChina
  5. 5.State Key Laboratory of Digital Manufacturing Equipment and TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations