Advertisement

Systematic study on the mechanical and electric behaviors of the nonbuckling interconnect design of stretchable electronics

  • Hao Liu
  • RiYe Xue
  • JianQiao Hu
  • XueCheng Ping
  • HuaPing Wu
  • MingQi Huang
  • Han Zhang
  • Xu Guo
  • Rui LiEmail author
  • YuLi ChenEmail author
  • YeWang SuEmail author
Article
  • 58 Downloads

Abstract

Recently, we developed a nonbuckling interconnect design that provides an effective approach to simultaneously achieving high elastic stretchability, easiness for encapsulation, and high electric performance for stretchable electronics. This paper aims to systematically study its mechanical and electric behaviors, including comparisons of the nonbuckling and buckling interconnect designs on stretchability, effects of the thickness on electric performance, and modeling and experimental investigations on the finite deformation mechanics. It is found that the results on stretchability depend on the layouts. Long straight segments and small arc radii for nonbuckling interconnects yield an enhancement of stretchability, which is much better than that of buckling designs. On the other hand, shorter straight segments or thicker interconnects are better to lower the resistances of interconnects. Therefore, optimization of the designs needs to balance the requirements of both the mechanical and electric performances. The finite deformation of interconnects during stretching is analyzed. The established analytic model is well validated by both the finite element modeling and experimental investigations. This work is key for providing the design guidelines for nonbuckling-based stretchable electronics.

Keywords

nonbuckling finite deformation stretchability stretchable electronics 

References

  1. 1.
    J. A. Rogers, T. Someya, and Y. Huang, Science 327, 1603 (2010).CrossRefGoogle Scholar
  2. 2.
    H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes III, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, Nature 454, 748 (2008).CrossRefGoogle Scholar
  3. 3.
    Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, Nature 497, 95 (2013).CrossRefGoogle Scholar
  4. 4.
    D. H. Kim, N. Lu, R. Ma, Y. S. Kim, R. H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H. J. Chung, H. Keum, M. McCormick, P. Liu, Y. W. Zhang, F. G. Omenetto, Y. Huang, T. Coleman, and J. A. Rogers, Science 333, 838 (2011).CrossRefGoogle Scholar
  5. 5.
    M. Ying, A. P. Bonifas, N. Lu, Y. Su, R. Li, H. Cheng, A. Ameen, Y. Huang, and J. A. Rogers, Nanotechnology 23, 344004 (2012).CrossRefGoogle Scholar
  6. 6.
    Y. Su, R. Li, H. Cheng, M. Ying, A. P. Bonifas, K. C. Hwang, J. A. Rogers, and Y. Huang, J. Appl. Phys. 114, 164511 (2013).CrossRefGoogle Scholar
  7. 7.
    S. Xu, Y. Zhang, J. Cho, J. Lee, X. Huang, L. Jia, J. A. Fan, Y. Su, J. Su, H. Zhang, H. Cheng, B. Lu, C. Yu, C. Chuang, T. I. Kim, T. Song, K. Shigeta, S. Kang, C. Dagdeviren, I. Petrov, P. V. Braun, Y. Huang, U. Paik, and J. A. Rogers, Nat. Commun. 4, 1543 (2013).CrossRefGoogle Scholar
  8. 8.
    N. Lu, and D. H. Kim, Soft Robotics 1, 53 (2014).CrossRefGoogle Scholar
  9. 9.
    D. Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, Science 311, 208 (2006).CrossRefGoogle Scholar
  10. 10.
    W. M. Choi, J. Song, D. Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, Nano Lett. 7, 1655 (2007).CrossRefGoogle Scholar
  11. 11.
    D. H. Kim, J. Song, W. Mook Choi, H. S. Kim, R. H. Kim, Z. Liu, Y. Y. Huang, K. C. Hwang, Y. Zhang, and J. A. Rogers, Proc. Natl. Acad. Sci. USA 105, 18675 (2008).CrossRefGoogle Scholar
  12. 12.
    R. H. Kim, D. H. Kim, J. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, Nat. Mater. 9, 929 (2010).CrossRefGoogle Scholar
  13. 13.
    D. H. Kim, N. Lu, Y. Huang, and J. A. Rogers, MRS Bull. 37, 226 (2012).CrossRefGoogle Scholar
  14. 14.
    S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K. I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, and J. A. Rogers, Science 344, 70 (2014).CrossRefGoogle Scholar
  15. 15.
    J. A. Fan, W. H. Yeo, Y. Su, Y. Hattori, W. Lee, S. Y. Jung, Y. Zhang, Z. Liu, H. Cheng, L. Falgout, M. Bajema, T. Coleman, D. Gregoire, R. J. Larsen, Y. Huang, and J. A. Rogers, Nat. Commun. 5, 3266 (2014).CrossRefGoogle Scholar
  16. 16.
    Y. Su, S. Wang, Y. A. Huang, H. Luan, W. Dong, J. A. Fan, Q. Yang, J. A. Rogers, and Y. Huang, Small 11, 367 (2015).CrossRefGoogle Scholar
  17. 17.
    Y. Su, X. Ping, K. J. Yu, J. W. Lee, J. A. Fan, B. Wang, M. Li, R. Li, D. V. Harburg, Y. A. Huang, C. Yu, S. Mao, J. Shim, Q. Yang, P. Y. Lee, A. Armonas, K. J. Choi, Y. Yang, U. Paik, T. Chang, T. J. Dawidczyk, Y. Huang, S. Wang, and J. A. Rogers, Adv. Mater. 29, 1604989 (2017).CrossRefGoogle Scholar
  18. 18.
    S. Xu, Z. Yan, K. I. Jang, W. Huang, H. Fu, J. Kim, Z. Wei, M. Flavin, J. McCracken, R. Wang, A. Badea, Y. Liu, D. Xiao, G. Zhou, J. Lee, H. U. Chung, H. Cheng, W. Ren, A. Banks, X. Li, U. Paik, R. G. Nuzzo, Y. Huang, Y. Zhang, and J. A. Rogers, Science 347, 154 (2015).CrossRefGoogle Scholar
  19. 19.
    Y. Zhang, S. Xu, H. Fu, J. Lee, J. Su, K. C. Hwang, J. A. Rogers, and Y. Huang, Soft Matter 9, 8062 (2013).CrossRefGoogle Scholar
  20. 20.
    H. Fu, S. Xu, R. Xu, J. Jiang, Y. Zhang, J. A. Rogers, and Y. Huang, Appl. Phys. Lett. 106, 091902 (2015).CrossRefGoogle Scholar
  21. 21.
    L. Liu, and N. Lu, Int. J. Solids Struct. 87, 48 (2016).CrossRefGoogle Scholar
  22. 22.
    Y. Zhang, S. Wang, X. Li, J. A. Fan, S. Xu, Y. M. Song, K. J. Choi, W. H. Yeo, W. Lee, S. N. Nazaar, B. Lu, L. Yin, K. C. Hwang, J. A. Rogers, and Y. Huang, Adv. Funct. Mater. 24, 2028 (2014).CrossRefGoogle Scholar
  23. 23.
    T. Widlund, S. Yang, Y. Y. Hsu, and N. Lu, Int. J. Solids Struct. 51, 4026 (2014).CrossRefGoogle Scholar
  24. 24.
    Z. Fan, Y. Zhang, Q. Ma, F. Zhang, H. Fu, K. C. Hwang, and Y. Huang, Int. J. Solids Struct. 91, 46 (2016).CrossRefGoogle Scholar
  25. 25.
    S. Yang, S. Qiao, and N. Lu, J. Appl. Mech. 84, 021004 (2016).CrossRefGoogle Scholar
  26. 26.
    ABAQUS. 2013 Analysis User’s Guide V6.13 (Dassault Systèmes, Pawtucket, RI, 2013).Google Scholar
  27. 27.
    S. P. Timoshenko, and Gere J. M. Gere, Theory of Elastic Stability (McGraw-Hill Company, New York, 1961).Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Solid MechanicsBeihang UniversityBeijingChina
  2. 2.State Key Laboratory of Nonlinear Mechanics, Institute of MechanicsChinese Academy of SciencesBeijingChina
  3. 3.State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational MechanicsDalian University of TechnologyDalianChina
  4. 4.School of Mechanical EngineeringTianjin University of Science & TechnologyTianjinChina
  5. 5.Key Laboratory of E&M (Zhejiang University of Technology), Ministry of Education & Zhejiang ProvinceHangzhouChina
  6. 6.Institute of AcousticsChinese Academy of SciencesBeijingChina
  7. 7.School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijingChina
  8. 8.State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering MechanicsDalian University of TechnologyDalianChina
  9. 9.State Key Laboratory of Digital Manufacturing Equipment and TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations