Advertisement

Terahertz-dependent PM2.5 monitoring and grading in the atmosphere

  • XinYang Miao
  • HongLei ZhanEmail author
  • Kun Zhao
  • ZhenWei Zhang
  • Lei Xu
  • CunLin Zhang
  • LiZhi Xiao
Article
  • 70 Downloads

Abstract

Rapid industrialization and economic development have led to serious pollution in the form of fine particulate matter (PM2.5, particulate matter with a diameter of less than 2.5 μm). In China, PM2.5 has been one of the most debated topics in councils of government and issues of public concern. Terahertz (THz) radiation was employed to measure the PM2.5 in the atmosphere from September 2014 to April 2015 in Beijing. Comparison of the PM2.5 level from the website with THz absorbance revealed a significant phenomenon: THz radiation can be used to monitor PM2.5 in the atmosphere. During Asia-Pacific Economic Cooperation (APEC) 2014, “APEC Blue” was also recorded in a THz system. The relationship between absorbance and PM2.5 demonstrates that THz radiation is an effective selection for air pollution grading. Based on the absorbance spectra, the elemental compositions were studied by two-dimensional correlation spectroscopy (2DCOS) in conjunction with X-ray fluorescence. Several single absorption peaks were revealed and caused by sulphate from coal combustion, vehicle exhaust emissions and secondary reactions. Furthermore, mathematical algorithms, such as the BPANN and SVM, can process the THz absorbance data and greatly improve the precision of the estimation of PM2.5 mass. Our results suggest that THz spectroscopy can not only reveal the component information for pollution source determination, but quantitatively monitor the PM2.5 content for pollution level evaluation. Therefore, the use of THz radiation is a new method for future air pollution monitoring and grading systems.

Keywords

terahertz PM2.5 monitoring grading 

References

  1. 1.
    R. J. Huang, Y. Zhang, C. Bozzetti, K. F. Ho, J. J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt, Nature 514, 218 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    Y. L. Zhang, and F. Cao, Sci. Rep. 5, 14884 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Wang, R. Zhang, and R. Saravanan, Nat. Commun. 5, 3098 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    Y. L. Zhang, R. J. Huang, I. El Haddad, K. F. Ho, J. J. Cao, Y. Han, P. Zotter, C. Bozzetti, K. R. Daellenbach, F. Canonaco, J. G. Slowik, G. Salazar, M. Schwikowski, J. Schnelle-Kreis, G. Abbaszade, R. Zimmermann, U. Baltensperger, A. S. H. Prévôt, and S. Szidat, Atmos. Chem. Phys. 15, 1299 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    Q. Y. Wang, R. J. Huang, J. J. Cao, X. X. Tie, H. Y. Ni, Y. Q. Zhou, Y. M. Han, T. F. Hu, C. S. Zhu, T. Feng, N. Li, and J. D. Li, Atmos. Chem. Phys. Discuss. 15, 14141 (2015).CrossRefGoogle Scholar
  6. 6.
    D. J. Wuebbles, H. Lei, and J. Lin, Environ. Pollut. 150, 65 (2007).CrossRefGoogle Scholar
  7. 7.
    Chinese State Council. Atmospheric Pollution Prevention and Control Action Plan (in Chinese) (http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm), accessed on September 12, 2013.
  8. 8.
    K. Huang, X. Zhang, and Y. Lin, Atmos. Res. 164-165, 65 (2015).CrossRefGoogle Scholar
  9. 9.
    People’s Daily Online. Beijing Wants to keep “APEC blue” (http://en.people.cn/n/2014/1114/c90882-8808691.html), published online on November 14, 2014.
  10. 10.
    People’s Daily Online. How the sky turned blue in Beijing? (http://en.people.cn/n/2015/0907/c98649-8946581.html), Published online on September 7, 2015.
  11. 11.
    K. Austen, Nature 517, 136 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    H. Akimoto, Science 302, 1716 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    Z. Meng, D. Dabdub, and J. H. Seinfeld, Science 277, 116 (1997).CrossRefGoogle Scholar
  14. 14.
    D. Y. H. Pui, S. C. Chen, and Z. Zuo, Particuology 13, 1 (2014).CrossRefGoogle Scholar
  15. 15.
    X. Y. Miao, S. N. Sun, Y. Z. Li, W. Wang, R. M. Bao, and K. Zhao, Sci. China-Phys. Mech. Astron. 60, 014221 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    L. M. Guan, H. L. Zhan, X. Y. Miao, J. Zhu, and K. Zhao, Sci. China-Phys. Mech. Astron. 60, 044211 (2017).ADSCrossRefGoogle Scholar
  17. 17.
    H. Hoshina, S. Ishii, Y. Morisawa, H. Sato, and I. Noda. Appl. Phys. Lett. 100, 011907 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    C. B. Cai, H. W. Yang, B. Wang, Y. Y. Tao, M. Q. Wen, and L. Xu, Vibr. Spectr. 56, 202 (2011).CrossRefGoogle Scholar
  19. 19.
    J. J. Moré, Lect. Notes Math. 630, 105 (1978).CrossRefGoogle Scholar
  20. 20.
    H. Zhan, K. Zhao, H. Zhao, Q. Li, S. Zhu, and L. Xiao, J. Phys. DAppl. Phys. 49, 395101 (2016).CrossRefGoogle Scholar
  21. 21.
    Z. Popovic, and E. N. Grossman, IEEE Trans. Terahertz Sci. Technol. 1, 133 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    Q. Li, K. Zhao, L. W. Zhang, C. Liang, Z. W. Zhang, C. L. Zhang, and D. H. Han, Sci. China-Phys. Mech. Astron. 57, 2354 (2014).ADSCrossRefGoogle Scholar
  23. 23.
    H. Zhan, S. Wu, R. Bao, L. Ge, and K. Zhao, Fuel 143, 189 (2015).CrossRefGoogle Scholar
  24. 24.
    T. Ryo, S. Koji, and T. Yuya, IEEE Trans. THz Sci. Technol. 134, 1658 (2009).Google Scholar
  25. 25.
    Y. Zhang, W. Huang, T. Cai, D. Fang, Y. Wang, J. Song, M. Hu, and Y. Zhang, Atmos. Res. 174-175, 62 (2016).CrossRefGoogle Scholar
  26. 26.
    Y. Gao, X. Guo, C. Li, H. Ding, L. Tang, and H. Ji, Environ. Sci. Pollut. Res. 22, 16688 (2015).CrossRefGoogle Scholar
  27. 27.
    H. Zhan, Q. Li, K. Zhao, L. Zhang, Z. Zhang, C. Zhang, and L. Xiao, IEEE Trans. THz Sci. Technol. 5, 1028 (2015).CrossRefGoogle Scholar
  28. 28.
    H. Zhan, K. Zhao, R. Bao, and L. Xiao, J. Infrared Milli Terahz Waves 37, 929 (2016).CrossRefGoogle Scholar
  29. 29.
    H. L. Zhan, K. Zhao, and L. Z. Xiao, Sci. China-Phys. Mech. Astron. 59, 644201 (2016).CrossRefGoogle Scholar
  30. 30.
    H. L. Zhan, N. Li, K. Zhao, Z. W. Zhang, C. L. Zhang, and R. M. Bao, Sci. China-Phys. Mech. Astron. 60, 044221 (2017).ADSCrossRefGoogle Scholar
  31. 31.
    X. Y. Miao, H. L. Zhan, and K. Zhao, Sci. China-Phys. Mech. Astron. 60, 024231 (2017).ADSCrossRefGoogle Scholar
  32. 32.
    Y. Hua, H. Zhang, and H. Zhou, Quantitative determination of cyfluthrin in n-hexane by terahertz time-domain spectroscopy with chemometrics methods. IEEE Trans. Instrum. Meas. 59, 1414 (2010).Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • XinYang Miao
    • 1
    • 2
  • HongLei Zhan
    • 1
    • 2
    • 3
    Email author
  • Kun Zhao
    • 1
    • 2
  • ZhenWei Zhang
    • 4
  • Lei Xu
    • 4
  • CunLin Zhang
    • 4
  • LiZhi Xiao
    • 1
  1. 1.State Key Laboratory of Petroleum Resources and ProspectingChina University of PetroleumBeijingChina
  2. 2.Beijing Key Laboratory of Optical Detection Technology for Oil and GasChina University of PetroleumBeijingChina
  3. 3.Department of Material Science and EngineeringChina University of PetroleumBeijingChina
  4. 4.Department of PhysicsCapital Normal UniversityBeijingChina

Personalised recommendations