Current noises in a topological Josephson junction

  • Yu-Hang Li
  • Jie Liu
  • JunTao Song
  • Hua JiangEmail author
  • Qing-Feng Sun
  • XinCheng XieEmail author


We study the transport properties of a superconductor-quantum spin Hall insulator-superconductor Josephson junction both in the absence and in the presence of a DC bias voltage. As the system is predicted to host Majorana fermions at its interfaces, the Andreev bond states are supposed to exhibit a distinct 4π periodicity in the superconducting phase difference, namely the fractional Josephson effect. Using the non-equilibrium Green’s function method, we calculate the current and the related current noise based on a tight-binding Hamiltonian. Our direct results show that the fractional Josephson effect can not be seen in equilibrium junctions. While in non-equilibrium junctions, this effect can be confirmed by the multiple Andreev reflections induced peaks of the non-equilibrium noise, which appear at discrete frequencies ω = neV with n being an integer number.


Majorana fermions Josephson junction current noise non-equilibrium Green’s function 


  1. 1.
    A. Stern, Nature 464, 187 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008), arXiv: 0707.1889.ADSCrossRefGoogle Scholar
  3. 3.
    A. Y. Kitaev, Ann. Phys. 303, 2 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    S. Das Sarma, M. Freedman, and C. Nayak, Phys. Rev. Lett. 94, 166802 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    P. Bonderson, M. Freedman, and C. Nayak, Phys. Rev. Lett. 101, 010501 (2008), arXiv: 0802.0279.ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    G. Moore, and N. Read, Nucl. Phys. B 360, 362 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    N. Read, and D. Green, Phys. Rev. B 61, 10267 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    A. Y. Kitaev, Phys.-Usp. 44, 131 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    L. Fu, and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008), arXiv: 0707.1692.ADSCrossRefGoogle Scholar
  10. 10.
    L. Fu, and C. L. Kane, Phys. Rev. B 79, 161408 (2009), arXiv: 0804.4469.ADSCrossRefGoogle Scholar
  11. 11.
    J. Linder, Y. Tanaka, T. Yokoyama, A. Sudbø, and N. Nagaosa, Phys. Rev. Lett. 104, 067001 (2010), arXiv: 0911.3918.ADSCrossRefGoogle Scholar
  12. 12.
    J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev. Lett. 104, 040502 (2010), arXiv: 0907.2239.ADSCrossRefGoogle Scholar
  13. 13.
    Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010), arXiv: 1003.1145.ADSCrossRefGoogle Scholar
  14. 14.
    R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010), arXiv: 1002.4033.ADSCrossRefGoogle Scholar
  15. 15.
    V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Science 336, 1003 (2012), arXiv: 1204.2792.ADSCrossRefGoogle Scholar
  16. 16.
    L. P. Rokhinson, X. Liu, and J. K. Furdyna, Nat. Phys. 8, 795 (2012), arXiv: 1204.4212.CrossRefGoogle Scholar
  17. 17.
    S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Science 346, 602 (2014), arXiv: 1410.0682.ADSCrossRefGoogle Scholar
  18. 18.
    A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, Nat. Phys. 8, 887 (2012), arXiv: 1205.7073.CrossRefGoogle Scholar
  19. 19.
    Q. L. He, L. Pan, A. L. Stern, E. C. Burks, X. Che, G. Yin, J. Wang, B. Lian, Q. Zhou, E. S. Choi, K. Murata, X. Kou, Z. Chen, T. Nie, Q. Shao, Y. Fan, S. C. Zhang, K. Liu, J. Xia, and K. L. Wang, Science 357, 294 (2017), arXiv: 1606.05712.ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    C. Qu, Y. Zhang, L. Mao, and C. Zhang, arXiv: 1109.4108.Google Scholar
  21. 21.
    K. T. Law, P. A. Lee, and T. K. Ng, Phys. Rev. Lett. 103, 237001 (2009), arXiv: 0907.1909.ADSCrossRefGoogle Scholar
  22. 22.
    L. Fidkowski, J. Alicea, N. H. Lindner, R. M. Lutchyn, and M. P. A. Fisher, Phys. Rev. B 85, 245121 (2012), arXiv: 1203.4818.ADSCrossRefGoogle Scholar
  23. 23.
    L. Fu, and C. L. Kane, Phys. Rev. Lett. 102, 216403 (2009), arXiv: 0903.2427.ADSCrossRefGoogle Scholar
  24. 24.
    A. R. Akhmerov, J. Nilsson, and C. W. J. Beenakker, Phys. Rev. Lett. 102, 216404 (2009), arXiv: 0903.2196.ADSCrossRefGoogle Scholar
  25. 25.
    L. Jiang, D. Pekker, J. Alicea, G. Refael, Y. Oreg, and F. von Oppen, Phys. Rev. Lett. 107, 236401 (2011), arXiv: 1107.4102.ADSCrossRefGoogle Scholar
  26. 26.
    A. Y. Kitaev, Ann. Phys. 303, 2 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    J. Alicea, Rep. Prog. Phys. 75, 076501 (2012), arXiv: 1202.1293.ADSCrossRefGoogle Scholar
  28. 28.
    P. A. Lee, Science 346, 545 (2014).ADSCrossRefGoogle Scholar
  29. 29.
    R. Žitko, J. S. Lim, R. López, and R. Aguado, Phys. Rev. B 91, 045441 (2015), arXiv: 1405.6084.ADSCrossRefGoogle Scholar
  30. 30.
    J. D. Sau, and P. M. R. Brydon, Phys. Rev. Lett. 115, 127003 (2015), arXiv: 1501.03149.ADSCrossRefGoogle Scholar
  31. 31.
    P. San-Jose, E. Prada, and R. Aguado, Phys. Rev. Lett. 108, 257001 (2012), arXiv: 1112.5983.ADSCrossRefGoogle Scholar
  32. 32.
    M. Houzet, J. S. Meyer, D. M. Badiane, and L. I. Glazman, Phys. Rev. Lett. 111, 046401 (2013), arXiv: 1303.4909.ADSCrossRefGoogle Scholar
  33. 33.
    S. P. Lee, K. Michaeli, J. Alicea, and A. Yacoby, Phys. Rev. Lett. 113, 197001 (2014), arXiv: 1403.2747.ADSCrossRefGoogle Scholar
  34. 34.
    R. S. Deacon, J. Wiedenmann, E. Bocquillon, F. Domínguez, T. M. Klapwijk, P. Leubner, C. Br¨une, E. M. Hankiewicz, S. Tarucha, K. Ishibashi, H. Buhmann, and L. W. Molenkamp, Phys. Rev. X 7, 021011 (2017), arXiv: 1603.09611.Google Scholar
  35. 35.
    J. Wiedenmann, E. Bocquillon, R. S. Deacon, S. Hartinger, O. Herrmann, T. M. Klapwijk, L. Maier, C. Ames, C. Br¨une, C. Gould, A. Oiwa, K. Ishibashi, S. Tarucha, H. Buhmann, and L. W. Molenkamp, Nat. Commun. 7, 10303 (2016), arXiv: 1503.05591.ADSCrossRefGoogle Scholar
  36. 36.
    E. Bocquillon, R. S. Deacon, J. Wiedenmann, P. Leubner, T. M. Klapwijk, C. Br¨une, K. Ishibashi, H. Buhmann, and L. W. Molenkamp, Nat. Nanotech. 12, 137 (2016), arXiv: 1601.08055.ADSCrossRefGoogle Scholar
  37. 37.
    Y. H. Li, J. Song, J. Liu, H. Jiang, Q. F. Sun, and X. C. Xie, Phys. Rev. B 97, 045423 (2018), arXiv: 1709.08355.ADSCrossRefGoogle Scholar
  38. 38.
    D. M. Badiane, M. Houzet, and J. S. Meyer, Phys. Rev. Lett. 107, 177002 (2011), arXiv: 1108.3870.ADSCrossRefGoogle Scholar
  39. 39.
    C. J. Bolech, and E. Demler, Phys. Rev. Lett. 98, 237002 (2007).ADSCrossRefGoogle Scholar
  40. 40.
    Y. F. Zhou, H. Jiang, X. C. Xie, and Q. F. Sun, Phys. Rev. B 95, 245137 (2017), arXiv: 1612.08248.ADSCrossRefGoogle Scholar
  41. 41.
    Q. Sun, J. Wang, and T. Lin, Phys. Rev. B 59, 3831 (1999).ADSCrossRefGoogle Scholar
  42. 42.
    Q. Sun, J. Wang, and T. Lin, Phys. Rev. B 59, 13126 (1999).ADSCrossRefGoogle Scholar
  43. 43.
    Q. Sun, H. Guo, and J. Wang, Phys. Rev. B 65, 075315 (2002).ADSCrossRefGoogle Scholar
  44. 44.
    J. Song, H. Liu, J. Liu, Y. X. Li, R. Joynt, Q. Sun, and X. C. Xie, Phys. Rev. B 93, 195302 (2016), arXiv: 1602.00813.ADSCrossRefGoogle Scholar
  45. 45.
    J. Song, H. Liu, and H. Jiang, J. Phys. Condens. Matter, 24, 215304 (2012).ADSCrossRefGoogle Scholar
  46. 46.
    J. C. Cuevas, A. Martín-Rodero, and A. L. Yeyati, Phys. Rev. B 54, 7366 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.International Center for Quantum Materials, School of PhysicsPeking UniversityBeijingChina
  2. 2.Department of Applied Physics, School of ScienceXi’an Jiaotong UniversityXi’anChina
  3. 3.Department of Physics and Hebei Advanced Thin Film LaboratoryHebei Normal UniversityShijiazhuangChina
  4. 4.College of Physics, Optoelectronics and EnergySoochow UniversitySuzhouChina
  5. 5.Collaborative Innovation Center of Quantum MatterBeijingChina
  6. 6.CAS Center for Excellence in Topological Quantum ComputationUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations