Advertisement

Critical fluctuations upon photoinduced phase transition in manganite strips

  • HanXuan Lin
  • Tian Miao
  • Qian Shi
  • Yang Yu
  • Hao Liu
  • Kai Zhang
  • WenBin Wang
  • LiFeng YinEmail author
  • Jian ShenEmail author
Article
  • 38 Downloads

Abstract

Light, acting as an external stimulus to induce various intriguing phenomena ranging from photovoltaics to photoinduced catalysis, exerts prominent effects in strongly correlated systems. It would be of particular interest to investigate photon-induced emerging phenomena in spatially confined strongly correlated systems, which are important for applications of these materials in future electronic devices. Colossal magnetoresistive manganites materials offer an ideal platform for such study due to their sensitivity to photo-excitation. Here, we fabricated 900 nm wide La0.325Pr0.3Ca0.375MnO3 strips, whose width is comparable to the size of the electronic phase separation (EPS) domains in this system. We observed the photoinduced critical fluctuations in the strips, where abrupt resistivity jumps occurred upon photoinduced phase transition depending sensitively on the light intensity. Based on the microscopic views of the EPS domains under photoexcitation, we conclude that such photo-induced resistivity fluctuations originate from the photoinduced phase fluctuations of individual EPS domains when their size becomes comparable to the strip width.

Keywords

photo-induced phase transition resistivity critical fluctuation electronic phase separation magnetic force microscope manganite strip optolithorgraphy 

References

  1. 1.
    S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science 264, 41 (1994).Google Scholar
  2. 2.
    G. C. Xiong, Q. Li, H. L. Ju, S. M. Bhagat, S. E. Lofland, R. L. Greene, and T. Venkatesan, Appl. Phys. Lett. 67, 3031 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    A. S. Dhoot, C. Israel, X. Moya, N. D. Mathur, and R. H. Friend, Phys. Rev. Lett. 102, 136402 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    N. Das, S. Tsui, Y. Y. Xue, Y. Q. Wang, and C. W. Chu, Phys. Rev. B 78, 235418 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    B. Mercey, M. Hervieu, W. Prellier, J. Wolfman, C. Simon, and B. Raveau, Appl. Phys. Lett. 78, 3857 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    T. Z. Ward, X. G. Zhang, L. F. Yin, X. Q. Zhang, M. Liu, P. C. Snijders, S. Jesse, E. W. Plummer, Z. H. Cheng, E. Dagotto, and J. Shen, Phys. Rev. Lett. 102, 087201 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    T. Nakajima, T. Tsuchiya, Y. Ueda, and T. Kumagai, Phys. Rev. B 80, 020401(R) (2009).ADSCrossRefGoogle Scholar
  8. 8.
    T. Nakajima, T. Tsuchiya, Y. Ueda, and T. Manabe, J. Phys. Soc. Jpn. 79, 014712 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    V. Kiryukhin, D. Casa, J. P. Hill, B. Keimer, A. Vigliante, Y. Tomioka, and Y. Tokura, Nature 386, 813 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    K. Miyano, T. Tanaka, Y. Tomioka, and Y. Tokura, Phys. Rev. Lett. 78, 4257 (1997).ADSCrossRefGoogle Scholar
  11. 11.
    N. Takubo, Y. Ogimoto, M. Nakamura, H. Tamaru, M. Izumi, and K. Miyano, Phys. Rev. Lett. 95, 017404 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    N. Takubo, I. Onishi, K. Takubo, T. Mizokawa, and K. Miyano, Phys. Rev. Lett. 101, 177403 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    J. M. Dai, W. H. Song, S. G. Wang, K. Y. Wang, S. L. Ye, J. J. Du, and Y. P. Sun, J. Appl. Phys. 89, 6967 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    Z. J. Yue, K. Zhao, H. Ni, S. Q. Zhao, Y. C. Kong, H. K. Wong, and A. J. Wang, J. Phys. D-Appl. Phys. 44, 095103 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    M. Fiebig, K. Miyano, Y. Tomioka, and Y. Tokura, Science 280, 1925 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    I. I. Smolyaninov, V. N. Smolyaninova, C. C. Davis, B. G. Kim, S. W. Cheong, and R. L. Greene, Phys. Rev. Lett. 87, 127204 (2001).ADSCrossRefGoogle Scholar
  17. 17.
    D. Polli, M. Rini, S. Wall, R. W. Schoenlein, Y. Tomioka, Y. Tokura, G. Cerullo, and A. Cavalleri, Nat. Mater. 6, 643 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    H. Ehrke, R. I. Tobey, S. Wall, S. A. Cavill, M. Först, V. Khanna, T. Garl, N. Stojanovic, D. Prabhakaran, A. T. Boothroyd, M. Gensch, A. Mirone, P. Reutler, A. Revcolevschi, S. S. Dhesi, and A. Cavalleri, Phys. Rev. Lett. 106, 217401 (2011), arXiv: 1012.4960.ADSCrossRefGoogle Scholar
  19. 19.
    S. A. McGill, R. I. Miller, O. N. Torrens, A. Mamchik, I. W. Chen, and J. M. Kikkawa, Phys. Rev. B 71, 075117 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    L. Hao, J. Wang, and D. Y. Xing, Phys. Rev. B 74, 014440 (2006).ADSCrossRefGoogle Scholar
  21. 21.
    H. Y. Zhai, J. X. Ma, D. T. Gillaspie, X. G. Zhang, T. Z. Ward, E. W. Plummer, and J. Shen, Phys. Rev. Lett. 97, 167201 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    T. Z. Ward, S. Liang, K. Fuchigami, L. F. Yin, E. Dagotto, E. W. Plummer, and J. Shen, Phys. Rev. Lett. 100, 247204 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    H. S. Alagoz, J. Jeon, R. Boos, R. H. Ahangharnejhad, K. H. Chow, and J. Jung, Appl. Phys. Lett. 105, 162409 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    H. Guo, J. H. Noh, S. Dong, P. D. Rack, Z. Gai, X. Xu, E. Dagotto, J. Shen, and T. Z. Ward, Nano Lett. 13, 3749 (2013), arXiv: 1308.6274.ADSCrossRefGoogle Scholar
  25. 25.
    M. Uehara, S. Mori, C. H. Chen, and S. W. Cheong, Nature 399, 560 (1999).ADSCrossRefGoogle Scholar
  26. 26.
    L. Zhang, C. Israel, A. Biswas, R. L. Greene, and A. de Lozanne, Science 298, 805 (2002).ADSCrossRefGoogle Scholar
  27. 27.
    G. Singh-Bhalla, S. Selcuk, T. Dhakal, A. Biswas, and A. F. Hebard, Phys. Rev. Lett. 102, 077205 (2009), arXiv: 0707.4411.ADSCrossRefGoogle Scholar
  28. 28.
    M. Tokunaga, Y. Tokunaga, and T. Tamegai, Phys. Rev. Lett. 93, 037203 (2004).ADSCrossRefGoogle Scholar
  29. 29.
    T. Z. Ward, J. D. Budai, Z. Gai, J. Z. Tischler, L. Yin, and J. Shen, Nat. Phys. 5, 885 (2009).CrossRefGoogle Scholar
  30. 30.
    R. Cauro, A. Gilabert, J. P. Contour, R. Lyonnet, M. G. Medici, J. C. Grenet, C. Leighton, and I. K. Schuller, Phys. Rev. B 63, 174423 (2001).ADSCrossRefGoogle Scholar
  31. 31.
    H. Liu, L. Lin, Y. Yu, H. Lin, Y. Zhu, T. Miao, Y. Bai, Q. Shi, P. Cai, Y. Kou, F. Lan, W. Wang, X. Zhou, S. Dong, L. Yin, and J. Shen, Phys. Rev. B 96, 195154 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • HanXuan Lin
    • 1
  • Tian Miao
    • 1
  • Qian Shi
    • 1
  • Yang Yu
    • 1
  • Hao Liu
    • 1
  • Kai Zhang
    • 1
  • WenBin Wang
    • 1
    • 3
  • LiFeng Yin
    • 1
    • 2
    Email author
  • Jian Shen
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Surface Physics and Department of PhysicsFudan UniversityShanghaiChina
  2. 2.Collaborative Innovation Center of Advanced MicrostructuresFudan UniversityShanghaiChina
  3. 3.Advanced Materials LaboratoryFudan UniversityShanghaiChina

Personalised recommendations