Advertisement

Investigations of an enclosed annular rotor-stator system with LES method

  • Zhe Jiao
  • Song FuEmail author
Article

Abstract

In this study, the flows in an enclosed annular rotor-stator system with the Reynolds number ranging from 0.75×105 to 3.75×105 and an aspect ratio of 36.5 are investigated using the LES method. Few studies have explored such a rotor-stator system with this aspect ratio and the flow structure on the rotor side. The mean flow structure varies from a torsional Couette type to a Batchelor type as the Reynolds number increases. The onset of the instability in the Bödewadt layer adjacent to the stator is delayed, whereas it is promoted in the Ekman layer adjacent to the rotor. Both the layers demonstrate rich spiral structures. Turbulent spirals are observed to occur at the rotor disk side that also generates TS-wave-like (Tollmien-Schlichting) structures between adjacent spiral arms. Further, the turbulence at the stator is complex and interesting. Statistically, the turbulence is highly anisotropic near both the rotating and nonrotating disks, which is depicted by the Reynolds stresses.

Keywords

rotating flow rotor-stator system large eddy simulation anisotropic turbulence Ekman-Bödewadt layers 

References

  1. 1.
    V. T. Kármán, and Z. Angew. Math. Mech. 1, 233 (1921).Google Scholar
  2. 2.
    P. J. Zandbergen, and D. Dijkstra, Annu. Rev. Fluid Mech. 19, 465 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    J. M. Owen, and R. H. Rogers, Flow and Heat Transfer in Rotating-Disc Systems (Wiley & Sons, New York, 1989).Google Scholar
  4. 4.
    P. R. N. Childs, Rotating Flow (Butterworth-Heinemann, Oxford, 2011).Google Scholar
  5. 5.
    B. Launder, S. Poncet, and E. Serre, Annu. Rev. Fluid Mech. 42, 229 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    X. Chen, and Z. S. She, Sci. China-Phys. Mech. Astron. 59, 114711 (2016), arXiv: 1604.08257.CrossRefGoogle Scholar
  7. 7.
    V. W. Ekman, Nytt Mag. Nat. 40, 37 (1902).Google Scholar
  8. 8.
    U. T. Bödewadt, Z. Angew. Math. Mech. 20, 241 (1940).CrossRefGoogle Scholar
  9. 9.
    G. K. Batchelor, Q. J. Mech. Appl. Math. 4, 29 (1951).CrossRefGoogle Scholar
  10. 10.
    J. W. Daily, and R. E. Nece, J. Basic Eng. 82, 217 (1960).CrossRefGoogle Scholar
  11. 11.
    M. Itoh, Y. Yamada, and K. Nishioka, JSMET 51, 452 (1985).CrossRefGoogle Scholar
  12. 12.
    M. Itoh, Y. Yamada, S. Imao, and M. Gonda, Engineering Turbulence Modeling and Experiments (Elsevier, New York, 1990), p. 659.Google Scholar
  13. 13.
    M. Itoh, Y. Yamada, S. Imao, and M. Gonda, Exp. Thermal Fluid Sci. 5, 359 (1992).CrossRefGoogle Scholar
  14. 14.
    S. C. Cheah, H. Iacovides, D. C. Jackson, H. Ji, and B. E. Launder, Exp. Thermal Fluid Sci. 9, 445 (1994).CrossRefGoogle Scholar
  15. 15.
    J. M. Owen, Flow and Heat Transfer in Rotating Disc Systems (Aichi Shuppan, Tokyo, 2000), p. 33.Google Scholar
  16. 16.
    L. Schouveiler, P. Le Gal, and M. P. Chauve, J. Fluid Mech. 443, 329 (2001).ADSCrossRefGoogle Scholar
  17. 17.
    M. Lygren, and H. I. Andersson, J. Fluid Mech. 426, 297 (2001).ADSCrossRefGoogle Scholar
  18. 18.
    M. Itoh, Turbulent Flows (ASME, New York, 1995), p. 27.Google Scholar
  19. 19.
    E. Serre, E. Crespo Del Arco, and P. Bontoux, J. Fluid Mech. 434, 65 (2001).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    X. Wu, and K. D. Squires, J. Fluid Mech. 418, 231 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    H. S. Littell, and J. K. Eaton, J. Fluid Mech. 266, 175 (1994).ADSCrossRefGoogle Scholar
  22. 22.
    H. I. Andersson, and M. Lygren, Int. J. Heat Fluid Flow 27, 551 (2006).CrossRefGoogle Scholar
  23. 23.
    E. Séverac, S. Poncet, E. Serre, and M. P. Chauve, Phys. Fluids. 19, 85 (2007).CrossRefGoogle Scholar
  24. 24.
    T. Washizu, F. Lubisch, and S. Obi, Flow Turb. Comb. 91, 607 (2013).CrossRefGoogle Scholar
  25. 25.
    S. Makino, M. Inagaki, and M. Nakagawa, Flow Turb. Comb. 95, 399 (2015).CrossRefGoogle Scholar
  26. 26.
    M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, Phys. Fluids AFluid Dya. 3, 1760 (1991).ADSCrossRefGoogle Scholar
  27. 27.
    D. K. Lilly, Phys. Fluids A-Fluid Dyn. 4, 633 (1992).ADSCrossRefGoogle Scholar
  28. 28.
    J. Smagorinsky, Mon. Wea. Rev. 91, 99 (1963).ADSCrossRefGoogle Scholar
  29. 29.
    K. Shi, H. X. Chen, and S. Fu, Sci. China-Phys. Mech. Astron. 56, 353 (2013).ADSCrossRefGoogle Scholar
  30. 30.
    Y. F. Zhang, H. X. Chen, and S. Fu, Sci. China-Phys. Mech. Astron. 55, 828 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    J. B. Huang, Z. X. Xiao, J. Liu, and S. Fu, Sci. China-Phys. Mech. Astron. 55, 260 (2012).ADSCrossRefGoogle Scholar
  32. 32.
    S. Viazzo, S. Poncet, E. Serre, A. Randriamampianina, and P. Bontoux, Flow Turb. Comb. 88, 63 (2012).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Aerospace EngineeringTsinghua UniversityBeijingChina

Personalised recommendations