Lepton-portal dark matter in hidden valley model and the DAMPE recent results

  • Yi-Lei Tang
  • Lei Wu
  • Mengchao ZhangEmail author
  • Rui Zheng


We study the recent e± cosmic ray excess reported by DAMPE in a Hidden Valley Model with lepton-portal dark matter. We find the electron-portal can account for the excess well and satisfy the DM relic density and direct detection bounds, while electron+muon/electron+muon+tau-portal suffers from strong constraints from lepton flavor violating observables, such as μ→3e. We also discuss possible collider signatures of our model, both at the LHC and a future 100 TeV hadron collider.


dark matter DAMPE LHC 


  1. 1.
    C. Fu, et al. (PandaX-II Collaboration), Phys. Rev. Lett. 118, 071301 (2017), arXiv: 1611.06553; Phys. Rev. Lett. 120, 049902 (2018).ADSCrossRefGoogle Scholar
  2. 2.
    E. Aprile, et al. (XENON Collaboration), Phys. Rev. Lett. 119, 181301 (2017), arXiv: 1705.06655.ADSCrossRefGoogle Scholar
  3. 3.
    O. Adriani, et al. (PAMELA Collaboration), Nature 458, 607 (2009), arXiv: 0810.4995.ADSGoogle Scholar
  4. 4.
    M. Aguilar, et al. (AMS Collaboration), Phys. Rev. Lett. 113, 221102 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    M. Ackermann, et al. (Fermi-LAT Collaboration), Phys. Rev. Lett. 115, 231301 (2015), arXiv: 1503.02641.ADSCrossRefGoogle Scholar
  6. 6.
    O. Adriani, et al. (CALET Collaboration), Phys. Rev. Lett. 119, 181101 (2017), arXiv: 1712.01711.ADSCrossRefGoogle Scholar
  7. 7.
    J. Chang, et al. (DAMPE Collaboration), Astroparticle Phys. 95, 6 (2017), arXiv: 1706.08453.ADSCrossRefGoogle Scholar
  8. 8.
    G. Ambrosi, et al. (DAMPE Collaboration), Nature, 63 (2017), arXiv: 1711.10981.Google Scholar
  9. 9.
    Q. Yuan, L. Feng, P. F. Yin, Y. Z. Fan, X. J. Bi, M. Y. Cui, T. K. Dong, Y. Q. Guo, K. Fang, H. B. Hu, X. Y. Huang, S. J. Lei, X. Li, S. J. Lin, H. Liu, P. X. Ma, W. X. Peng, R. Qiao, Z. Q. Shen, M. Su, Y. F. Wei, Z. L. Xu, C. Yue, J. J. Zang, C. Zhang, X. M. Zhang, Y. P. Zhang, Y. J. Zhang, and Y. L. Zhang, arXiv: 1711.10989.Google Scholar
  10. 10.
    L. Zu, C. Zhang, L. Feng, Q. Yuan and Y. Z. Fan, arXiv: 1711.11052.Google Scholar
  11. 11.
    P. H. Gu, and X. G. He, Phys. Lett. B 778, 292 (2018), arXiv: 1711.11000.ADSCrossRefGoogle Scholar
  12. 12.
    G. H. Duan, L. Feng, F. Wang, L. Wu, J. M. Yang, and R. Zheng, J. High Energ. Phys. 2018, 107 (2018), arXiv: 1711.11012.CrossRefGoogle Scholar
  13. 13.
    K. Fang, X. J. Bi, and P. F. Yin, Astrophys. J. 854, 57 (2018), arXiv: 1711.10996.ADSCrossRefGoogle Scholar
  14. 14.
    Y. Z. Fan,W. C. Huang, M. Spinrath, Y. L. S. Tsai, and Q. Yuan, arXiv: 1711.10995.Google Scholar
  15. 15.
    P. Athron, C. Balazs, A. Fowlie, and Y. Zhang, J. High Energ. Phys. 2018, 121 (2018), arXiv: 1711.11376.CrossRefGoogle Scholar
  16. 16.
    W. Chao, H. K. Guo, H. L. Li and J. Shu, arXiv: 1712.00037.Google Scholar
  17. 17.
    X. J. Huang, Y. L. Wu, W. H. Zhang, and Y. F. Zhou, arXiv: 1712.00005.Google Scholar
  18. 18.
    K. A. Olive, Chin. Phys. C 40, 100001 (2016).CrossRefGoogle Scholar
  19. 19.
    D. Barducci, G. Bélanger, J. Bernon, F. Boudjema, J. Da Silva, S. Kraml, U. Laa, and A. Pukhov, Comput. Phys. Commun. 222, 327 (2018).ADSCrossRefGoogle Scholar
  20. 20.
    P. A. R. Ade, et al. (Planck Collaboration), Astron. Astrophys. 571, A16 (2014), arXiv: 1303.5076.CrossRefGoogle Scholar
  21. 21.
    Y. Bai, and J. Berger, J. High Energ. Phys. 2014, 153 (2014), arXiv: 1402.6696.CrossRefGoogle Scholar
  22. 22.
    E. Aprile, et al. (XENON100 Collaboration), Science 349, 851 (2015).Google Scholar
  23. 23.
    M. Ackermann, et al. (Fermi-LAT Collaboration), Astrophys. J. 799, 86 (2015), arXiv: 1410.3696.ADSCrossRefGoogle Scholar
  24. 24.
    S. Abdollahi, et al. (Fermi-LAT Collaboration), Phys. Rev. Lett. 118, 091103 (2017), arXiv: 1703.01073.ADSCrossRefGoogle Scholar
  25. 25.
    H. Abdallah, et al. (H.E.S.S. Collaboration), Phys. Rev. Lett. 117, 111301 (2016), arXiv: 1607.08142.ADSCrossRefGoogle Scholar
  26. 26.
    S. Profumo, F. S. Queiroz, J. Silk, and C. Siqueira, J. Cosmol. Astropart. Phys. 2018, 010 (2018), arXiv: 1711.03133.CrossRefGoogle Scholar
  27. 27.
    M. Buschmann, J. Kopp, J. Liu, and P. A. N. Machado, J. High Energ. Phys. 2015, 45 (2015), arXiv: 1505.07459.CrossRefGoogle Scholar
  28. 28.
    M. Zhang, M. Kim, H. S. Lee and M. Park, arXiv: 1612.02850.Google Scholar
  29. 29.
    M. Aaboud, et al. (ATLAS Collaboration), arXiv: 1803.02762.Google Scholar
  30. 30.
    J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, J. High Energ. Phys. 2014, 79 (2014), arXiv: 1405.0301.CrossRefGoogle Scholar
  31. 31.
    T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energ. Phys. 2006, 026 (2006).CrossRefGoogle Scholar
  32. 32.
    J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens, and M. Selvaggi, J. High Energ. Phys. 2014, 57 (2014), arXiv: 1307.6346.CrossRefGoogle Scholar
  33. 33.
    M. Cacciari, G. P. Salam, and G. Soyez, Eur. Phys. J. C 72, 1896 (2012), arXiv: 1111.6097.ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yi-Lei Tang
    • 2
  • Lei Wu
    • 1
  • Mengchao Zhang
    • 3
    Email author
  • Rui Zheng
    • 4
  1. 1.Department of Physics and Institute of Theoretical PhysicsNanjing Normal UniversityNanjingChina
  2. 2.School of PhysicsKorea Institute for Advanced Study (KIAS)SeoulKorea
  3. 3.Center for Theoretical Physics of the UniverseInstitute for Basic Science (IBS)DaejeonKorea
  4. 4.Department of PhysicsUniversity of CaliforniaDavisUSA

Personalised recommendations