Advertisement

Dark Matter Particle Explorer observations of high-energy cosmic ray electrons plus positrons and their physical implications

  • Qiang YuanEmail author
  • Lei Feng
Invited Review

Abstract

The DArk Matter Particle Explorer (DAMPE) is a satellite-borne, high-energy particle and -ray detector, which is dedicated to indirectly detecting particle dark matter and studying high-energy astrophysics. The first results about precise measurement of the cosmic ray electron plus positron spectrum between 25 GeV and 4.6 TeV were published recently. The DAMPE spectrum reveals an interesting spectral softening arount 0:9 TeV and a tentative peak around 1:4 TeV. These results have inspired extensive discussion. The detector of DAMPE, the data analysis, and the first results are introduced. In particular, the physical interpretations of the DAMPE data are reviewed.

Keywords

dark matter cosmic rays electrons plus positrons pulsars 

References

  1. 1.
    G. Jungman, M. Kamionkowski, and K. Griest, Phys. Rep. 267, 195 (1996).ADSGoogle Scholar
  2. 2.
    G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279 (2005).ADSGoogle Scholar
  3. 3.
    X. J. Bi, P. F. Yin, and Q. Yuan, Front. Phys. 8, 794 (2013), arXiv: 1409. 4590.Google Scholar
  4. 4.
    P. F. Smith, and J. D. Lewin, Phys. Rep. 187, 203 (1990).ADSGoogle Scholar
  5. 5.
    D. S. Akerib, et al. (LUX Collaboration), Phys. Rev. Lett. 118, 021303 (2017), arXiv: 1608. 07648.ADSGoogle Scholar
  6. 6.
    E. Aprile, et al. (XENON Collaboration), Phys. Rev. Lett. 119,181301 (2017), arXiv: 1705. 06655.Google Scholar
  7. 7.
    X. Cui, et al. (PandaX Collaboration), Phys. Rev. Lett. 119, 181302 (2017).ADSGoogle Scholar
  8. 8.
    J. Chang, et al. (ATIC Collaboration), Nature 456, 362 (2008).ADSGoogle Scholar
  9. 9.
    O. Adriani, et al. (PAMELA Collaboration), Nature 458, 607 (2009), arXiv: 0810. 4995.ADSGoogle Scholar
  10. 10.
    A. A. Abdo, et al. (Fermi Collaboration), Phys. Rev. Lett. 102, 181101 (2009), arXiv: 0905. 0025.ADSGoogle Scholar
  11. 11.
    M. Ackermann, et al. (Fermi Collaboration), Phys. Rev. Lett. 108, 011103 (2012), arXiv: 1109. 0521.ADSGoogle Scholar
  12. 12.
    M. Aguilar, et al. (AMS Collaboration), Phys. Rev. Lett. 110, 141102 (2013).ADSGoogle Scholar
  13. 13.
    M. Aguilar, et al. (AMS Collaboration), Phys. Rev. Lett. 113, 221102 (2014).ADSGoogle Scholar
  14. 14.
    D. Hooper, and L. Goodenough, Phys. Lett. B 697, 412 (2011), arXiv: 1010. 2752.ADSGoogle Scholar
  15. 15.
    M. Ackermann, et al. (Fermi Collaboration), Astrophys. J. 840, 43 (2017), arXiv: 1704. 03910.ADSGoogle Scholar
  16. 16.
    S. W. Barwick, et al. (HEAT Collaboration), Astrophys. J. 482, L191 (1997).ADSGoogle Scholar
  17. 17.
    M. Aguilar, et al. (AMS Collaboration), Phys. Lett. B 646,145 (2007).ADSGoogle Scholar
  18. 18.
    O. Adriani, et al. (PAMELA Collaboration), Phys. Rev. Lett. 102, 051101 (2009), arXiv: 0810. 4994.ADSGoogle Scholar
  19. 19.
    O. Adriani, et al. (PAMELA Collaboration), Phys. Rev. Lett. 105, 121101 (2010), arXiv: 1007. 0821.ADSGoogle Scholar
  20. 20.
    M. Aguilar, et al. (AMS Collaboration), Phys. Rev. Lett. 117, 091103 (2016).ADSGoogle Scholar
  21. 21.
    Y. Z. Fan, B. Zhang, and J. Chang, Int. J. Mod. Phys. D 19, 2011 (2010), arXiv: 1008. 4646.ADSGoogle Scholar
  22. 22.
    P. D. Serpico, Astropart. Phys. 39–40, 2 (2012), arXiv: 1108. 4827.Google Scholar
  23. 23.
    C. S. Shen, Astrophys. J. 162, L181 (1970).Google Scholar
  24. 24.
    D. Hooper, P. Blasi, and P. D. Serpico, J. Cosmol. Astropart. Phys. 2009, 025 (2009), arXiv: 0810. 1527.Google Scholar
  25. 25.
    H. Yüksel, M. D. Kistler, and T. Stanev, Phys. Rev. Lett. 103, 051101 (2009), arXiv: 0810. 2784.ADSGoogle Scholar
  26. 26.
    L. Bergström, T. Bringmann, and J. Edsjö, Phys. Rev. D 78, 103520 (2008), arXiv: 0808. 3725.ADSGoogle Scholar
  27. 27.
    M. Cirelli, M. Kadastik, M. Raidal, and A. Strumia, Nucl. Phys. B 813, 1 (2009), arXiv: 0809. 2409.ADSGoogle Scholar
  28. 28.
    P. Yin, Q. Yuan, J. Liu, J. Zhang, X. Bi, S. Zhu, and X. Zhang, Phys. Rev. D 79, 023512 (2009), arXiv: 0811. 0176.ADSGoogle Scholar
  29. 29.
    G. Bertone, M. Cirelli, A. Strumia, and M. Taoso, J. Cosmol. Astropart. Phys. 2009, 009 (2009), arXiv: 0811. 3744.Google Scholar
  30. 30.
    L. Bergstrom, G. Bertone, T. Bringmann, J. Edsjo, and M. Taoso, Phys. Rev. D 79, 081303 (2009), arXiv: 0812. 3895.ADSGoogle Scholar
  31. 31.
    M. Papucci, and A. Strumia, J. Cosmol. Astropart. Phys. 2010, 014 (2010), arXiv: 0912. 0742.Google Scholar
  32. 32.
    M. Cirelli, P. Panci, and P. D. Serpico, Nucl. Phys. B 840, 284 (2010), arXiv: 0912. 0663.ADSGoogle Scholar
  33. 33.
    A. U. Abeysekara, et al. (HAWC Collaboration), Science 358, 9 1 1 (2017), arXiv: 1711. 06223.Google Scholar
  34. 34.
    D. Hooper, I. Cholis, T. Linden, and K. Fang, Phys. Rev. D 96, 103013 (2017), arXiv: 1702. 08436.ADSGoogle Scholar
  35. 35.
    K. Fang, X. J. Bi, P. F. Yin, and Q. Yuan, arXiv: 1803. 02640.Google Scholar
  36. 36.
    J. Hall, and D. Hooper, Phys. Lett. B 681, 220 (2009), arXiv: 0811. 3362.ADSGoogle Scholar
  37. 37.
    D. Malyshev, I. Cholis, and J. Gelfand, Phys. Rev. D 80, 063005 (2009), arXiv: 0903. 1310.ADSGoogle Scholar
  38. 38.
    M. Pato, M. Lattanzi, and G. Bertone, J. Cosmol. Astropart. Phys. 2010, 020 (2010), arXiv: 1010. 5236.Google Scholar
  39. 39.
    P. F. Yin, Z. H. Yu, Q. Yuan, and X. J. Bi, Phys. Rev. D 88, 023001 (2013), arXiv: 1304. 4128.ADSGoogle Scholar
  40. 40.
    J. Chang, Chin. J. Space Sci. 34, 550 (2014).Google Scholar
  41. 41.
    J. Chang, et al. (DAMPE Collaboration), Astroparticle Phys. 95, 6 (2017), arXiv: 1706. 08453.ADSGoogle Scholar
  42. 42.
    G. Ambrosi, et al. (DAMPE Collaboration), Nature 552, 63 (2017), arXiv: 1711. 10981.ADSGoogle Scholar
  43. 43.
    Y. Yu, Z. Sun, H. Su, Y. Yang, J. Liu, J. Kong, G. Xiao, X. Ma, Y. Zhou, H. Zhao, D. Mo, Y. Zhang, P. Yang, J. Chen, H. Yang, F. Fang, S. Zhang, H. J. Yao, J. Duan, X. Niu, Z. Hu, Z. Wang, X. Wang, J. Zhang, and W. Liu, Astropart. Phys. 94, 1 (2017), arXiv: 1703. 00098.ADSGoogle Scholar
  44. 44.
    P. Azzarello, G. Ambrosi, R. Asfandiyarov, P. Bernardini, B. Bertucci, A. Bolognini, F. Cadoux, M. Caprai, I. De Mitri, M. Domenjoz, Y. Dong, M. Duranti, R. Fan, P. Fusco, V. Gallo, F. Gargano, K. Gong, D. Guo, C. Husi, M. Ionica, D. La Marra, F. Loparco, G. Marsella, M. N. Mazziotta, J. Mesa, A. Nardinocchi, L. Nicola, G. Pelleriti, W. Peng, M. Pohl, V. Postolache, R. Qiao, A. Surdo, A. Tykhonov, S. Vitillo, H. Wang, M. Weber, D. Wu, X. Wu, and F. Zhang, Nucl. Instrum. Methods Phys. Res. Sect. A 831, 378 (2016).ADSGoogle Scholar
  45. 45.
    Z. Zhang, Y. Zhang, J. Dong, S. Wen, C. Feng, C. Wang, Y. Wei, X. Wang, Z. Xu, and S. Liu, Nucl. Instrum. Methods Phys. Res. Sect. A 780, 21 (2015).ADSGoogle Scholar
  46. 46.
    M. He, T. Ma, J. Chang, Y. Zhang, Y. Y. Huang, J. J. Zang, J. Wu, and T. K. Dong, Acta Astron. Sin. 57, 1 (2016).ADSGoogle Scholar
  47. 47.
    Z. L. Xu, K. K. Duan, Z. Q. Shen, S. J. Lei, T. K. Dong, F. Gargano, S. Garrappa, D. Y. Guo, W. Jiang, X. Li, Y. F. Liang, M. N. Mazziotta, M. F. Munoz Salinas, M. Su, V. Vagelli, Q. Yuan, C. Yue, J. J. Zang, Y. P. Zhang, Y. L. Zhang, and S. Zimmer, Res. Astron. Astrophys. 18, 027 (2018), arXiv: 1712. 02939.ADSGoogle Scholar
  48. 48.
    A. Tykhonov, G. Ambrosi, R. Asfandiyarov, P. Azzarello, P. Bernardini, B. Bertucci, A. Bolognini, F. Cadoux, A. DAmone, A. De Benedittis, I. De Mitri, M. Di Santo, Y. F. Dong, M. Duranti, D. DUrso, R. R. Fan, P. Fusco, V. Gallo, M. Gao, F. Gargano, S. Garrappa, K. Gong, M. Ionica, D. La Marra, S. J. Lei, X. Li, F. Loparco, G. Marsella, M. N. Mazziotta, W. X. Peng, R. Qiao, M. M. Salinas, A. Surdo, V. Vagelli, S. Vitillo, H. Y. Wang, J. Z. Wang, Z. M. Wang, D. Wu, X. Wu, F. Zhang, J. Y. Zhang, H. Zhao, and S. Zimmer, Nucl. Instrum. Methods Phys. Res. Sect. A 893, 43 (2018), arXiv: 1712. 02739.ADSGoogle Scholar
  49. 49.
    S. Vitillo, and V. Gallo, Proc. Sci. ICRC2017, 240 (2017).Google Scholar
  50. 50.
    C. Yue, J. Zang, T. Dong, X. Li, Z. Zhang, S. Zimmer, W. Jiang, Y. Zhang, and D. Wei, Nucl. Instrum. Methods Phys. Res. Sect. A 856, 11 (2017), arXiv: 1703. 02821.ADSGoogle Scholar
  51. 51.
    Z. Zhang, C. Wang, J. Dong, Y. Wei, S. Wen, Y. Zhang, Z. Li, C. Feng, S. Gao, Z. T. Shen, D. Zhang, J. Zhang, Q. Wang, S. Y. Ma, D. Yang, D. Jiang, D. Chen, Y. Hu, G. Huang, X. Wang, Z. Xu, S. Liu, Q. An, and Y. Gong, Nucl. Instrum. Methods Phys. Res. Sect. A 836, 98 (2016), arXiv: 1602. 07015.ADSGoogle Scholar
  52. 52.
    J.–J. Zang, C. Yue, and X. Li, Proc. Sci. ICRC2017, 197 (2017).Google Scholar
  53. 53.
    J. Chang, Int. Cosmic Ray Conf. 5, 37 (1999).ADSGoogle Scholar
  54. 54.
    J. Chang, J. H. Adams Jr., H. S. Ahn, G. L. Bashindzhagyan, K. E. Batkov, M. Christl, A. R. Fazely, O. Ganel, R. M. Gunashingha, T. G. Guzik, J. Isbert, K. C. Kim, E. N. Kouznetsov, Z. W. Lin, M. I. Panasyuk, A. D. Panov, W. K. H. Schmidt, E. S. Seo, N. V. Sokolskaya, J. W. Watts, J. P. Wefel, J. Wu, and V. I. Zatsepin, Adv. Space Res. 42, 431 (2008).ADSGoogle Scholar
  55. 55.
    A. C. Cummings, E. C. Stone, B. C. Heikkila, N. Lal, W. R. Webber, G. Jóhannesson, I. V. Moskalenko, E. Orlando, and T. A. Porter, Astrophys. J. 831, 18 (2016).ADSGoogle Scholar
  56. 56.
    M. A. DuVernois, S. W. Barwick, J. J. Beatty, A. Bhattacharyya, C. R. Bower, C. J. Chaput, S. Coutu, G. A. de Nolfo, D. M. Lowder, S. Mc–Kee, D. Muller, J. A. Musser, S. L. Nutter, E. Schneider, S. P. Swordy, G. Tarle, A. D. Tomasch, and E. Torbet, Astrophys. J. 559, 296 (2001).ADSGoogle Scholar
  57. 57.
    S. Torii, T. Tamura, N. Tateyama, K. Yoshida, J. Nishimura, T. Yamagami, H. Murakami, T. Kobayashi, Y. Komori, K. Kasahara, and T. Yuda, Astrophys. J. 559, 973 (2001).ADSGoogle Scholar
  58. 58.
    S. Abdollahi, et al. (Fermi Collaboration), Phys. Rev. D 95, 082007 (2017), arXiv: 1704. 07195.ADSGoogle Scholar
  59. 59.
    O. Adriani, et al. (CALET Collaboration), Phys. Rev. Lett. 119, 181101 (2017), arXiv: 1712. 01711.ADSGoogle Scholar
  60. 60.
    F. Aharonian, et al. (H.E.S.S. Collaboration), Phys. Rev. Lett. 101, 261104 (2008), arXiv: 0811. 3894.ADSGoogle Scholar
  61. 61.
    F. Aharonian, et al. (H.E.S.S. Collaboration), Astron. Astrophys. 508, 561 (2009), arXiv: 0905. 0105.ADSGoogle Scholar
  62. 62.
    D. B. Tridon, et al. (MAGIC Collaboration), Int. Cosmic Ray Conf. 6, 47 (2011).Google Scholar
  63. 63.
    D. Staszak, et al. (VERITAS Collaboration), Int. Cosmic Ray Conf. 34, 411 (2015).ADSGoogle Scholar
  64. 64.
    E. C. Stone, A. C. Cummings, F. B. McDonald, B. C. Heikkila, N. Lal, and W. R. Webber, Science 341, 150 (2013).ADSGoogle Scholar
  65. 65.
    T. Delahaye, R. Lineros, F. Donato, N. Fornengo, J. Lavalle, P. Salati, and R. Taillet, Astron. Astrophys. 501, 821 (2009), arXiv: 0809. 5268.ADSGoogle Scholar
  66. 66.
    A. M. Atoyan, F. A. Aharonian, and H. J. Volk, Phys. Rev. D 52, 3265 (1995).ADSGoogle Scholar
  67. 67.
    Q. Yuan, L. Feng, P. F. Yin, Y. Z. Fan, X. J. Bi, M. Y. Cui, T. K. Dong, Y. Q. Guo, K. Fang, H. B. Hu, X. Y. Huang, S. J. Lei, X. Li, S. J. Lin, H. Liu, P. X. Ma, W. X. Peng, R. Qiao, Z. Q. Shen, M. Su, Y. F. Wei, Z. L. Xu, C. Yue, J. J. Zang, C. Zhang, X. M. Zhang, Y. P. Zhang, Y. J. Zhang, and Y. L. Zhang, arXiv: 1711. 10989.Google Scholar
  68. 68.
    L. Accardo, et al. (AMS Collaboration), Phys. Rev. Lett. 113, 121101 (2014).ADSGoogle Scholar
  69. 69.
    I. V. Moskalenko, and A. W. Strong, Astrophys. J. 493, 694 (1998).ADSGoogle Scholar
  70. 70.
    J. Liu, Q. Yuan, X. J. Bi, H. Li, and X. Zhang, Phys. Rev. D 85, 043507 (2012), arXiv: 1106. 3882.ADSGoogle Scholar
  71. 71.
    Q. Yuan, X. J. Bi, G. M. Chen, Y. Q. Guo, S. J. Lin, and X. Zhang, Astropart. Phys. 60, 1 (2015), arXiv: 1304. 1482.ADSGoogle Scholar
  72. 72.
    M. Ackermann, et al. (Fermi Collaboration), Science 339, 807 (2013), arXiv: 1302. 3307.ADSGoogle Scholar
  73. 73.
    M. A. Malkov, P. H. Diamond, and R. Z. Sagdeev, Nat. Commun. 2, 194 (2011), arXiv: 1004. 4714.ADSGoogle Scholar
  74. 74.
    Y. Ohira, K. Murase, and R. Yamazaki, Mon. Not. R. Astron. Soc. 410, 1577 (2010), arXiv: 1007. 4869.ADSGoogle Scholar
  75. 75.
    H. Li, and Y. Chen, Mon. Not. R. Astron. Soc.–Lett. 409, L35 (2010), arXiv: 1009. 0894.ADSGoogle Scholar
  76. 76.
    Q. Yuan, and X. J. Bi, Phys. Lett. B 727, 1 (2013), arXiv: 1304. 2687.ADSGoogle Scholar
  77. 77.
    Q. Yuan, and X. J. Bi, J. Cosmol. Astropart. Phys. 2015, 033 (2015), arXiv: 1408. 2424.Google Scholar
  78. 78.
    S. J. Lin, Q. Yuan, and X. J. Bi, Phys. Rev. D 91, 063508 (2015), arXiv: 1409. 6248.ADSGoogle Scholar
  79. 79.
    L. Feng, R. Z. Yang, H. N. He, T. K. Dong, Y. Z. Fan, and J. Chang, Phys. Lett. B 728, 250 (2014), arXiv: 1303. 0530.ADSGoogle Scholar
  80. 80.
    I. Ch이is, and D. Hooper, Phys. Rev. D 88, 023013 (2013), arXiv: 1304. 1840.ADSGoogle Scholar
  81. 81.
    F. A. Aharonian, A. M. Atoyan, and H. J. Voelk, Astron. Astrophys. 294, L41 (1995).ADSGoogle Scholar
  82. 82.
    M. D. Mauro, F. Donato, N. Fornengo, R. Lineros, and A. Vittino, J. Cosmol. Astropart. Phys. 2014, 006 (2014), arXiv: 1402. 0321.Google Scholar
  83. 83.
    K. Fang, B. B. Wang, X. J. Bi, S. J. Lin, and P. F. Yin, Astrophys. J. 836, 172 (2017), arXiv: 1611. 10292.ADSGoogle Scholar
  84. 84.
    J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 490, 493 (1997).ADSGoogle Scholar
  85. 85.
    P. A. R. Ade, et al. (Planck Collaboration), Astron. Astrophys. 594, A13 (2016), arXiv: 1502. 01589.Google Scholar
  86. 86.
    X. Huang, Y. L. S. Tsai, and Q. Yuan, Comput. Phys. Commun. 213, 252 (2017), arXiv: 1603. 07119.ADSGoogle Scholar
  87. 87.
    M. Ackermann, et al. (Fermi Collaboration), Astrophys. J. 799, 86 (2015), arXiv: 1410. 3696.ADSGoogle Scholar
  88. 88.
    K. Fang, X. J. Bi, and P. F. Yin, Astrophys. J. 854, 57 (2018), arXiv: 1711. 10996.ADSGoogle Scholar
  89. 89.
    V. N. Zirakashvili, and F. Aharonian, Astron. Astrophys. 465, 695 (2007).ADSGoogle Scholar
  90. 90.
    X. J. Huang, Y. L. Wu, W. H. Zhang, and Y. F. Zhou, arXiv: 1712. 00005.Google Scholar
  91. 91.
    A. Fowlie, Phys. Lett. B 780, 181 (2018), arXiv: 1712. 05089.ADSGoogle Scholar
  92. 92.
    S. F. Ge, H. J. He, and Y. C. Wang, Phys. Lett. B 781, 88 (2018), arXiv: 1712. 02744.ADSGoogle Scholar
  93. 93.
    Y. Z. Fan, W. C. Huang, M. Spinrath, Y. L. S. Tsai, and Q. Yuan, Phys. Lett. B 781, 83 (2018), arXiv: 1711. 10995.ADSGoogle Scholar
  94. 94.
    W. Chao, and Q. Yuan, arXiv: 1711. 11182.Google Scholar
  95. 95.
    J. Cao, L. Feng, X. Guo, L. Shang, F. Wang, and P. Wu, arXiv: 1711. 11452.Google Scholar
  96. 96.
    X. Liu, and Z. Liu, arXiv: 1711. 11579.Google Scholar
  97. 97.
    P. H. Gu, arXiv: 1711. 11333.Google Scholar
  98. 98.
    G. H. Duan, X. G. He, L. Wu, and J. M. Yang, arXiv: 1711. 11563.Google Scholar
  99. 99.
    K. Ghorbani, and P. H. Ghorbani, arXiv: 1712. 01239.Google Scholar
  100. 100.
    N. Okada, and O. Seto, arXiv: 1712. 03652.Google Scholar
  101. 101.
    T. Nomura, H. Okada, and P. Wu, arXiv: 1801. 04729.Google Scholar
  102. 102.
    T. Nomura, and H. Okada, arXiv: 1712. 00941.Google Scholar
  103. 103.
    Y. Sui, and Y. Zhang, arXiv: 1712. 03642.Google Scholar
  104. 104.
    L. Zu, C. Zhang, L. Feng, Q. Yuan, and Y. Z. Fan, arXiv: 1711. 11052.Google Scholar
  105. 105.
    Y. L. Tang, L. Wu, M. Zhang, and R. Zheng, arXiv: 1711. 11058.Google Scholar
  106. 106.
    W. Chao, H. K. Guo, H. L. Li, and J. Shu, arXiv: 1712. 00037.Google Scholar
  107. 107.
    H. B. Jin, B. Yue, X. Zhang, and X. Chen, arXiv: 1712. 00362.Google Scholar
  108. 108.
    Y. Gao, and Y. Z. Ma, arXiv: 1712. 00370.Google Scholar
  109. 109.
    J. S. Niu, T. Li, R. Ding, B. Zhu, H. F. Xue, and Y. Wang, arXiv: 1712. 00372.Google Scholar
  110. 110.
    P. H. Gu, arXiv: 1712. 00922.Google Scholar
  111. 111.
    R. Zhu, and Y. Zhang, arXiv: 1712. 01143.Google Scholar
  112. 112.
    F. Yang, M. Su, and Y. Zhao, arXiv: 1712. 01724.Google Scholar
  113. 113.
    R. Ding, Z. L. Han, L. Feng, and B. Zhu, arXiv: 1712. 02021.Google Scholar
  114. 114.
    Y. Zhao, K. Fang, M. Su, and M. C. Miller, arXiv: 1712. 03210.Google Scholar
  115. 115.
    J. Cao, X. Guo, L. Shang, F. Wang, P. Wu, and L. Zu, Phys. Rev. D 97, 063016 (2018), arXiv: 1712. 05351.ADSGoogle Scholar
  116. 116.
    J. S. Niu, T. Li, and F. Z. Xu, arXiv: 1712. 09586.Google Scholar
  117. 117.
    C. Jin, W. Liu, H. B. Hu, and Y. Q. Guo, arXiv: 1611. 08384.Google Scholar
  118. 118.
    W. Zhu, J. Lan, J. Ruan, and F. Wang, arXiv: 1712. 07868.Google Scholar
  119. 119.
    P. H. Gu, and X. G. He, Phys. Lett. B 778, 292 (2018), arXiv: 1711. 11000.ADSGoogle Scholar
  120. 120.
    G. H. Duan, L. Feng, F. Wang, L. Wu, J. M. Yang, and R. Zheng, J. High Energ. Phys. 2018, 107 (2018), arXiv: 1711. 11012.Google Scholar
  121. 121.
    J. Cao, L. Feng, X. Guo, L. Shang, F. Wang, P. Wu, and L. Zu, Eur. Phys. J. C 78, 198 (2018), arXiv: 1712. 01244.ADSGoogle Scholar
  122. 122.
    Z. L. Han, W. Wang, and R. Ding, Eur. Phys. J. C 78, 216 (2018), arXiv: 1712. 05722.ADSGoogle Scholar
  123. 123.
    T. Li, N. Okada, and Q. Shafi, Phys. Lett. B 779, 130 (2018), arXiv: 1712. 00869.ADSGoogle Scholar
  124. 124.
    P. Athron, C. Balazs, A. Fowlie, and Y. Zhang, J. High Energ. Phys. 2018, 121 (2018), arXiv: 1711. 11376.Google Scholar
  125. 125.
    C. H. Chen, C. W. Chiang, and T. Nomura, Phys. Rev. D 97, 061302 (2018), arXiv: 1712. 00793.ADSGoogle Scholar
  126. 126.
    G. Liu, F. Wang, W. Wang, and J. M. Yang, Chin. Phys. C 42, 035101 (2018), arXiv: 1712. 02381.ADSGoogle Scholar
  127. 127.
    C. F. Kennel, and F. V. Coroniti, Astrophys. J. 283, 694 (1984).ADSGoogle Scholar
  128. 128.
    F. A. Aharonian, S. V. Bogovalov, and D. Khangulyan, Nature 482, 507 (2012).ADSGoogle Scholar
  129. 129.
    F. Aharonian, D. Khangulyan, and D. Malyshev, Astron. Astrophys. 547, A114 (2012), arXiv: 1207. 0458.ADSGoogle Scholar
  130. 130.
    Y. Huang, X. W. Liu, H. B. Yuan, M. S. Xiang, H. W. Zhang, B. Q. Chen, J. J. Ren, C. Wang, Y. Zhang, Y. H. Hou, Y. F. Wang, and Z. H. Cao, Mon. Not. R. Astron. Soc. 463, 2623 (2016), arXiv: 1604.01216.ADSGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain ObservatoryChinese Academy of SciencesNanjingChina
  2. 2.School of Astronomy and Space ScienceUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Center for High Energy PhysicsPeking UniversityBeijingChina

Personalised recommendations