Advertisement

Low-energy electronic properties of a Weyl semimetal quantum dot

  • Shu-Feng Zhang
  • Chang-Wen Zhang
  • Pei-Ji Wang
  • Qing-Feng Sun
Article
  • 24 Downloads

Abstract

We investigate the low-energy electronic structure of a Weyl semimetal quantum dot (QD) with a simple model Hamiltonian with only two Weyl points. Distinguished from the semiconductor and topological insulator QDs, there exist both surface and bulk states near the Fermi level in Weyl semimetal QDs. The surface state, distributed near the side surface of the QD, contributes a circular persistent current, an orbital magnetic moment, and a chiral spin polarization with spin-current locking. There are always surface states even for a strong magnetic field, even though a given surface state gradually evolves into a Landau level with increasing magnetic field. It indicates that these unique properties can be tuned via the QD size. In addition, we show the correspondence to the electronic structures of a three-dimensional Weyl semimetal, such as Weyl point and Fermi arc. Because a QD has the largest surface-to-volume ratio, it provides a new platform to verify Weyl semimetal by separating and detecting the signals of surface states. Besides, the study of Weyl QDs is also necessary for potential applications in nanoelectronics.

Keywords

quantum dot Weyl semimetal Landau quantization 

References

  1. 1.
    M. Z. Hasan, and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010), arXiv: 1002.3895.ADSCrossRefGoogle Scholar
  2. 2.
    X. L. Qi, and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011), arXiv: 1008.2026.ADSCrossRefGoogle Scholar
  3. 3.
    X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011), arXiv: 1007.0016.ADSCrossRefGoogle Scholar
  4. 4.
    H. Weyl, Z. Physik 56, 330 (1929).ADSCrossRefGoogle Scholar
  5. 5.
    H. B. Nielsen, and M. Ninomiya, Nucl. Phys. B 185, 20 (1981)ADSCrossRefGoogle Scholar
  6. 5a.
    H. B. Nielsen, and M. Ninomiya, ibid. 193, 173 (1981).ADSGoogle Scholar
  7. 6.
    H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Phys. Rev. X 5, 011029 (2015), arXiv: 1501.00060.Google Scholar
  8. 7.
    S. M. Huang, S. Y. Xu, I. Belopolski, C. C. Lee, G. Chang, B. K. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin, and M. Z. Hasan, Nat. Commun. 6, 7373 (2015).CrossRefGoogle Scholar
  9. 8.
    S. Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C. C. Lee, S. M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. K. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Science 349, 613 (2015), arXiv: 1502.03807.ADSCrossRefGoogle Scholar
  10. 9.
    B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Phys. Rev. X 5, 031013 (2015), arXiv: 1502.04684.Google Scholar
  11. 10.
    S. Y. Xu, N. Alidoust, I. Belopolski, Z. Yuan, G. Bian, T. R. Chang, H. Zheng, V. N. Strocov, D. S. Sanchez, G. Chang, C. Zhang, D. Mou, Y. Wu, L. Huang, C. C. Lee, S. M. Huang, B. K. Wang, A. Bansil, H. T. Jeng, T. Neupert, A. Kaminski, H. Lin, S. Jia, and M. Zahid Hasan, Nat. Phys. 11, 748 (2015).CrossRefGoogle Scholar
  12. 11.
    Z. K. Liu, L. X. Yang, Y. Sun, T. Zhang, H. Peng, H. F. Yang, C. Chen, Y. Zhang, Y. F. Guo, D. Prabhakaran, M. Schmidt, Z. Hussain, S. K. Mo, C. Felser, B. Yan, and Y. L. Chen, Nat. Mater. 15, 27 (2015).ADSCrossRefGoogle Scholar
  13. 12.
    D. F. Xu, Y. P. Du, Z. Wang, Y. P. Li, X. H. Niu, Q. Yao, P. Dudin, Z. A. Xu, X. G. Wan, and D. L. Feng, Chin. Phys. Lett. 32, 107101 (2015), arXiv: 1509.03847.ADSCrossRefGoogle Scholar
  14. 13.
    K. Deng, G. Wan, P. Deng, K. Zhang, S. Ding, E. Wang, M. Yan, H. Huang, H. Zhang, Z. Xu, J. Denlinger, A. Fedorov, H. Yang, W. Duan, H. Yao, Y. Wu, S. Fan, H. Zhang, X. Chen, and S. Zhou, Nat. Phys. 12, 1105 (2016), arXiv: 1603.08508.CrossRefGoogle Scholar
  15. 14.
    I. Belopolski, D. S. Sanchez, Y. Ishida, X. Pan, P. Yu, S. Y. Xu, G. Chang, T. R. Chang, H. Zheng, N. Alidoust, G. Bian, M. Neupane, S. M. Huang, C. C. Lee, Y. Song, H. Bu, G. Wang, S. Li, G. Eda, H. T. Jeng, T. Kondo, H. Lin, Z. Liu, F. Song, S. Shin, and M. Z. Hasan, Nat. Commun. 7, 13643 (2016), arXiv: 1612.05990.ADSCrossRefGoogle Scholar
  16. 15.
    F. Y. Bruno, A. Tamai, Q. S. Wu, I. Cucchi, C. Barreteau, A. de la Torre, S. McKeown Walker, S. Riccò, Z. Wang, T. K. Kim, M. Hoesch, M. Shi, N. C. Plumb, E. Giannini, A. A. Soluyanov, and F. Baumberger, Phys. Rev. B 94, 121112 (2016), arXiv: 1604.02411.ADSCrossRefGoogle Scholar
  17. 16.
    Y. Wu, D. Mou, N. H. Jo, K. Sun, L. Huang, S. L. Bud’ko, P. C. Canfield, and A. Kaminski, Phys. Rev. B 94, 121113 (2016), arXiv: 1604.05176.ADSCrossRefGoogle Scholar
  18. 17.
    A. A. Burkov, Nat. Mater 15, 1145 (2016), arXiv: 1610.07866.ADSCrossRefGoogle Scholar
  19. 17a.
    A. A. Burkov, J. Phys.-Condens. Matter 27, 113201 (2015), 1502.07609.ADSCrossRefGoogle Scholar
  20. 18.
    S. Jia, S. Y. Xu, and M. Z. Hasan, Nat. Mater 15, 1140 (2016), arXiv: 1612.00416.ADSCrossRefGoogle Scholar
  21. 19.
    G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett. 107, 186806 (2011), arXiv: 1106.3125.ADSCrossRefGoogle Scholar
  22. 20.
    A. A. Burkov, and L. Balents, Phys. Rev. Lett. 107, 127205 (2011), arXiv: 1105.5138.ADSCrossRefGoogle Scholar
  23. 21.
    C. L. Zhang, S. Y. Xu, I. Belopolski, Z. Yuan, Z. Lin, B. Tong, G. Bian, N. Alidoust, C. C. Lee, S. M. Huang, T. R. Chang, G. Chang, C. H. Hsu, H. T. Jeng, M. Neupane, D. S. Sanchez, H. Zheng, J. Wang, H. Lin, C. Zhang, H. Z. Lu, S. Q. Shen, T. Neupert, M. Zahid Hasan, and S. Jia, Nat. Commun. 7, 10735 (2016), arXiv: 1601.04208.ADSCrossRefGoogle Scholar
  24. 22.
    Z. Hou, and Q. F. Sun, Phys. Rev. B 96, 155305 (2017), arXiv: 1705.00904.ADSCrossRefGoogle Scholar
  25. 23.
    C. Z. Chen, J. Song, H. Jiang, Q. Sun, Z. Wang, and X. C. Xie, Phys. Rev. Lett. 115, 246603 (2015), arXiv: 1507.00128.ADSCrossRefGoogle Scholar
  26. 24.
    S. A. Parameswaran, T. Grover, D. A. Abanin, D. A. Pesin, and A. Vishwanath, Phys. Rev. X 4, 031035 (2014), arXiv: 1306.1234.Google Scholar
  27. 25.
    A. C. Potter, I. Kimchi, and A. Vishwanath, Nat. Commun. 5, 5161 (2014), arXiv: 1402.6342.ADSCrossRefGoogle Scholar
  28. 26.
    C. K. Chan, P. A. Lee, K. S. Burch, J. H. Han, and Y. Ran, Phys. Rev. Lett. 116, 026805 (2016), arXiv: 1509.05400.ADSCrossRefGoogle Scholar
  29. 26a.
    C. K. Chan, N. H. Lindner, G. Refael, and P. A. Lee, Phys. Rev. B 95, 041104 (2017), 1607.07839.ADSCrossRefGoogle Scholar
  30. 27.
    Q. D. Jiang, H. Jiang, H. Liu, Q. F. Sun, and X. C. Xie, Phys. Rev. Lett. 115, 156602 (2015), arXiv: 1501.06535.ADSCrossRefGoogle Scholar
  31. 28.
    A. Igarashi, and M. Koshino, Phys. Rev. B 95, 195306 (2017), arXiv: 1703.03532.ADSCrossRefGoogle Scholar
  32. 29.
    W. E. Liu, E. M. Hankiewicz, and D. Culcer, Phys. Rev. B 96, 045307 (2017), arXiv: 1705.07612.ADSCrossRefGoogle Scholar
  33. 30.
    N. Bovenzi, M. Breitkreiz, T. E. O’Brien, J. Tworzydlo, and C. W. J. Beenakker,. arXiv: 1707.01038.Google Scholar
  34. 31.
    T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, Nat. Mater. 14, 280 (2014), arXiv: 1404.7794.ADSCrossRefGoogle Scholar
  35. 32.
    X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen, Phys. Rev. X 5, 031023 (2015), arXiv: 1503.01304.Google Scholar
  36. 33.
    Z. Zhu, X. Lin, J. Liu, B. Fauqué, Q. Tao, C. Yang, Y. Shi, and K. Behnia, Phys. Rev. Lett. 114, 176601 (2015), arXiv: 1502.07797.ADSCrossRefGoogle Scholar
  37. 34.
    Q. D. Jiang, H. Jiang, H. Liu, Q. F. Sun, and X. C. Xie, Phys. Rev. B 93, 195165 (2016), arXiv: 1601.07297.ADSCrossRefGoogle Scholar
  38. 35.
    C. L. Zhang, Z. Yuan, Q. D. Jiang, B. Tong, C. Zhang, X. C. Xie, and S. Jia, Phys. Rev. B 95, 085202 (2017), arXiv: 1702.01245.ADSCrossRefGoogle Scholar
  39. 36.
    A. M. Smith, and S. Nie, Acc. Chem. Res. 43, 190 (2010).CrossRefGoogle Scholar
  40. 37.
    G. Luo, Z. Z. Zhang, H. O. Li, X. X. Song, G. W. Deng, G. Cao, M. Xiao, and G. P. Guo, Front. Phys. 12, 128502 (2017), arXiv: 1612.09063.CrossRefGoogle Scholar
  41. 38.
    K. Chang, and W. K. Lou, Phys. Rev. Lett. 106, 206802 (2011), arXiv: 1010.4153.ADSCrossRefGoogle Scholar
  42. 39.
    N. Malkova, and G. W. Bryant, Phys. Rev. B 82, 155314 (2010).ADSCrossRefGoogle Scholar
  43. 40.
    A. Kundu, A. Zazunov, A. L. Yeyati, T. Martin, and R. Egger, Phys. Rev. B 83, 125429 (2011), arXiv: 1102.4437.ADSCrossRefGoogle Scholar
  44. 41.
    J. Li, W. K. Lou, D. Zhang, X. J. Li, W. Yang, and K. Chang, Phys. Rev. B 90, 115303 (2014).ADSCrossRefGoogle Scholar
  45. 42.
    M. Grujic, M. Zarenia, A. Chaves, M. Tadic, G. A. Farias, and F. M. Peeters, Phys. Rev. B 84, 205441 (2011).ADSCrossRefGoogle Scholar
  46. 43.
    M. Mirzakhani, M. Zarenia, S. A. Ketabi, D. R. da Costa, and F. M. Peeters, Phys. Rev. B 93, 165410 (2016).ADSCrossRefGoogle Scholar
  47. 44.
    P. Potasz, and J. Fernández-Rossier, Nano Lett. 15, 5799 (2015), ar-Xiv: 1509.02661.ADSCrossRefGoogle Scholar
  48. 45.
    C. Ertler, M. Raith, and J. Fabian, Phys. Rev. B 89, 075432 (2014), arXiv: 1310.1463.ADSCrossRefGoogle Scholar
  49. 46.
    X. Xin, and D. Zhou, Phys. Rev. B 91, 165120 (2015).ADSCrossRefGoogle Scholar
  50. 47.
    J. S. Van Dyke, and D. K. Morr, Phys. Rev. B 93, 081401 (2016), arXiv: 1509.08467.ADSCrossRefGoogle Scholar
  51. 48.
    C. De Beule, N. T. Ziani, M. Zarenia, B. Partoens, and B. Trauzettel, Phys. Rev. B 94, 155111 (2016), arXiv: 1601.01593.ADSCrossRefGoogle Scholar
  52. 49.
    S. N. Zhang, H. Jiang, and H. Liu, Mod. Phys. Lett. B 27, 1350104 (2013).ADSCrossRefGoogle Scholar
  53. 50.
    G. J. Ferreira, and D. Loss, Phys. Rev. Lett. 111, 106802 (2013), arXiv: 1305.5003.ADSCrossRefGoogle Scholar
  54. 51.
    H. P. Paudel, and M. N. Leuenberger, Phys. Rev. B 88, 085316 (2013), arXiv: 1212.6772.ADSCrossRefGoogle Scholar
  55. 52.
    M. Korkusinski, and P. Hawrylak, Sci. Rep. 4, 4903 (2014), arXiv: 1405.2285.ADSCrossRefGoogle Scholar
  56. 53.
    J. J. Qi, H. W. Liu, H. Jiang, and X. C. Xie, Sci. China-Phys. Mech. Astron. 59, 677811 (2016), arXiv: 1604.01194.CrossRefGoogle Scholar
  57. 54.
    S. Cho, D. Kim, P. Syers, N. P. Butch, J. Paglione, and M. S. Fuhrer, Nano Lett. 12, 469 (2012), arXiv: 1201.3910.ADSCrossRefGoogle Scholar
  58. 55.
    G. Z. Jia, W. K. Lou, F. Cheng, X. L. Wang, J. H. Yao, N. Dai, H. Q. Lin, and K. Chang, Nano Res. 8, 1443 (2015).CrossRefGoogle Scholar
  59. 56.
    K. Y. Yang, Y. M. Lu, and Y. Ran, Phys. Rev. B 84, 075129 (2011), arXiv: 1105.2353.ADSCrossRefGoogle Scholar
  60. 57.
    H. Z. Lu, S. B. Zhang, and S. Q. Shen, Phys. Rev. B 92, 045203 (2015), arXiv: 1503.04394.ADSCrossRefGoogle Scholar
  61. 58.
    S. F. Zhang, W. Zhu, and Q. F. Sun, J. Phys.-Condens. Matter 25, 295301 (2013), arXiv: 1301.5182.ADSCrossRefGoogle Scholar
  62. 59.
    H. Z. Lu, W. Y. Shan, W. Yao, Q. Niu, and S. Q. Shen, Phys. Rev. B 81, 115407 (2010), arXiv: 0908.3120.ADSCrossRefGoogle Scholar
  63. 60.
    S. Q. Shen, Topological Insulators (Springer-Verlag, Berlin Heidelberg, 2012).CrossRefGoogle Scholar
  64. 61.
    M. Zarenia, J. M. Pereira, A. Chaves, F. M. Peeters, and G. A. Farias, Phys. Rev. B 81, 045431 (2010), arXiv: 1002.1688.ADSCrossRefGoogle Scholar
  65. 62.
    B. Q. Lv, S. Muff, T. Qian, Z. D. Song, S. M. Nie, N. Xu, P. Richard, C. E. Matt, N. C. Plumb, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, J. H. Dil, J. Mesot, M. Shi, H. M. Weng, and H. Ding, Phys. Rev. Lett. 115, 217601 (2015), arXiv: 1510.07256.ADSCrossRefGoogle Scholar
  66. 63.
    P. K. Das, D. Di Sante, I. Vobornik, J. Fujii, T. Okuda, E. Bruyer, A. Gyenis, B. E. Feldman, J. Tao, R. Ciancio, G. Rossi, M. N. Ali, S. Picozzi, A. Yadzani, G. Panaccione, and R. J. Cava, Nat. Commun. 7, 10847 (2016).ADSCrossRefGoogle Scholar
  67. 64.
    D. H. Lee, Phys. Rev. Lett. 103, 196804 (2009), arXiv: 0908.2490.ADSCrossRefGoogle Scholar
  68. 65.
    J. C. Chen, J. Wang, and Q. F. Sun, Phys. Rev. B 85, 125401 (2012).ADSCrossRefGoogle Scholar
  69. 66.
    S. Zhang, H. Jiang, X. C. Xie, and Q. Sun, Phys. Rev. B 89, 155419 (2014).ADSCrossRefGoogle Scholar
  70. 67.
    L. J. Yin, K. K. Bai, W. X. Wang, S. Y. Li, Y. Zhang, and L. He, Front. Phys. 12, 127208 (2017), arXiv: 1703.04241.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and TechnologyUniversity of JinanJinanChina
  2. 2.International Center for Quantum Materials, School of PhysicsPeking UniversityBeijingChina
  3. 3.Collaborative Innovation Center of Quantum MatterBeijingChina

Personalised recommendations