Advertisement

Interaction between the atmospheric boundary layer and a standalone wind turbine in Gansu—Part I: Field measurement

  • DeShun Li
  • Tao Guo
  • YinRan Li
  • JinSen Hu
  • Zhi Zheng
  • Ye LiEmail author
  • YuJia Di
  • WenRui HuEmail author
  • RenNian LiEmail author
Article

Abstract

Experiments and numerical simulations of the wake field behind a horizontal-axis wind turbine are carried out to investigate the interaction between the atmospheric boundary layer and a stand-alone wind turbine. The tested wind turbine (33 kW) has a rotor diameter of 14.8 m and hub height of 15.4 m. An anti-icing digital Sonic wind meter, an atmospheric pressure sensor, and a temperature and humidity sensor are installed in the upstream wind measurement mast. Wake velocity is measured by three US CSAT3 ultrasonic anemometers. To reflect the characteristics of the whole flow field, numerical simulations are performed through large eddy simulation (LES) and with the actuator line model. The experimental results show that the axial velocity deficit rate ranges from 32.18% to 63.22% at the three measuring points. Meanwhile, the time-frequency characteristics of the axial velocities at the left and right measuring points are different. Moreover, the average axial and lateral velocity deficit of the right measuring point is greater than that of the left measuring point. The turbulent kinetic energy (TKE) at the middle and right measuring points exhibit a periodic variation, and the vortex sheet-pass frequency is mostly similar to the rotational frequency of the rotor. However, this feature is not obvious for the left measuring point. Meanwhile, the power spectra of the vertical velocity fluctuation show the slope of −1, and those of lateral and axial velocity fluctuations show slopes of −1 and −5/3, respectively. However, the inertial subranges of axial velocity fluctuation at the left, middle, and right measuring points occur at 4, 7, and 7 Hz, respectively. The above conclusion fully illustrates the asymmetry of the left and right measuring points. The experimental data and numerical simulation results collectively indicate that the wake is deflected to the right under the influence of lateral force. Therefore, wake asymmetry can be mainly attributed to the lateral force exerted by the wind turbine on the fluid.

Keywords

wind power atmospheric turbulence effects velocity measurements turbulent wakes large-eddy simulations 

Keywords

89.30.Ee 42.68.Bz 47.80.Cb 47.27.wb 47.27.ep 

References

  1. 1.
    L. J. Vermeer, J. N. Sørensen, and A. Crespo, Prog. Aerospace Sci. 39, 467 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    A. Crespo, J. Hernández, and S. Frandsen, Wind Energy 18, 1 (2015).Google Scholar
  3. 3.
    H. Snel, Wind Energy 1, 46 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    Q. Zhao, G. Zhao, B. Wang, Q. Wang, Y. Shi, and G. Xu, Chin. J. Aeronaut. 31, 214 (2018).CrossRefGoogle Scholar
  5. 5.
    M. O. L. Hansen, J. N. Sørensen, S. Voutsinas, N. Sørensen, and H. A. Madsen, Prog. Aerospace Sci. 42, 285 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    V. L. Okulov, J. N. Sørensen, and D. H. Wood, Prog. Aerospace Sci. 73, 19 (2015).CrossRefGoogle Scholar
  7. 7.
    B. Sanderse, S. P. Pijl, and B. Koren, Wind Energy 14, 799 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    J. O. Mo, A. Choudhry, M. Arjomandi, R. Kelso, and Y. H. Lee, J. Wind Eng. Ind. Aerodyn. 117, 38 (2013).CrossRefGoogle Scholar
  9. 9.
    J. O. Mo, A. Choudhry, M. Arjomandi, and Y. H. Lee, J. Wind Eng. Ind. Aerodyn. 112, 11 (2013).CrossRefGoogle Scholar
  10. 10.
    R. Ashton, F. Viola, F. Gallaire, and G. V. Iungo, J. Phys.-Conf. Ser. 625, 012033 (2015).CrossRefGoogle Scholar
  11. 11.
    N. J. Vermeer, How Fast is a Tip Vortex? Technical Report (Delft University of Technology, 1995).Google Scholar
  12. 12.
    I. Grant, P. Parkin, and X. Wang, Exp. Fluids 23, 513 (1997).CrossRefGoogle Scholar
  13. 13.
    I. Grant, M. Mo, X. Pan, P. Parkin, J. Powell, H. Reinecke, K. Shuang, F. Coton, and D. Lee, J. Wind Eng. Ind. Aerodyn. 85, 177 (2000).CrossRefGoogle Scholar
  14. 14.
    I. Grant, and P. Parkin, Exp. Fluid. 28, 368 (2000).CrossRefGoogle Scholar
  15. 15.
    W. Haans, T. Sant, G. van Kuik, and G. van Bussel, J. Sol. Energy Eng. 127, 456 (2005).CrossRefGoogle Scholar
  16. 16.
    W. Haans, T. Sant, G. V. Kuik, and G. V. Bussel, in 31st European Rotorcraft Forum (Confederation of European Aerospace Societies, Tokyo, 2005), pp. 61.1–61.14.Google Scholar
  17. 17.
    W. Haans, T. Sant, G. van Kuik, and G. van Bussel, J. Sol. Energy Eng. 128, 472 (2006).CrossRefGoogle Scholar
  18. 18.
    W. Haans, T. Sant, G. van Kuik, and G. van Bussel, Wind Energy 11, 245 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    D. Medici, and P. H. Alfredsson, Wind Energy 9, 219 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    D. Medici, and P. H. Alfredsson, Wind Energy 11, 211 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    P. D. Clausen, D. M. Piddington, and D. H. Wood, J. Wind Eng. Ind. Aerodyn. 25, 189 (1987).CrossRefGoogle Scholar
  22. 22.
    P. R. Ebert, and D. H. Wood, Renew. Energy 12, 225 (1997).CrossRefGoogle Scholar
  23. 23.
    P. R. Ebert, and D. H. Wood, Renew. Energy 18, 513 (1999).CrossRefGoogle Scholar
  24. 24.
    P. R. Ebert, and D. H. Wood, Renew. Energy 22, 461 (2001).CrossRefGoogle Scholar
  25. 25.
    P. Parkin, R. Holm, D. Medici, in the Fourth International Symposium on Particle Image Velocimetry (DLR-Mitteilung, Gottingen, 2001), pp. 155–162.Google Scholar
  26. 26.
    J. Whale, Investigating Fundamental Properties of Wind Turbine Wake Structure Using Particle Image Velocimetry, Technical Report (University of Edinburgh, 1996).Google Scholar
  27. 27.
    H. Hu, Z. Yang, and P. Sarkar, Exp. Fluid. 52, 1277 (2012).CrossRefGoogle Scholar
  28. 28.
    S. Aubrun, S. Loyer, P. E. Hancock, and P. Hayden, J. Wind Eng. Ind. Aerodyn. 120, 1 (2013).CrossRefGoogle Scholar
  29. 29.
    L. E. M. Lignarolo, D. Ragni, C. J. Ferreira, and G. J. W. van Bussel, J. Renew. Sustain. Energy 8, 023301 (2016).CrossRefGoogle Scholar
  30. 30.
    Y. A. Muller, S. Aubrun, and C. Masson, Exp. Fluid. 56, 53 (2015).CrossRefGoogle Scholar
  31. 31.
    W. Zhang, C. D. Markfort, and F. Porté-Agel, Exp. Fluid. 52, 1219 (2012).CrossRefGoogle Scholar
  32. 32.
    J. G. Schepers, A. J. Brand, A. Bruining, J. M. R. Graham, M. M. Hand, D. G. Infield, H. A. Madsen, R. J. H. Paynter, and D. A. Simms, “Final report of IEA Annex XIV: Field Rotor Aerodynamics”, No. ECN-C-97-027, 1997.Google Scholar
  33. 33.
    J. G. Schepers, A. Brand, and A. Bruining, “Final report of IEA Annex XVIII: Enhanced Field Rotor Aerodynamics DatabaseE”, No. CN-C-02-016, 2002.Google Scholar
  34. 34.
    R. J. Barthelmie, L. Folkerts, G. C. Larsen, K. Rados, S. C. Pryor, S. T. Frandsen, B. Lange, and G. Schepers, J. Atmos. Ocean. Technol. 23, 888 (2006).ADSCrossRefGoogle Scholar
  35. 35.
    A. M. Helge, B. Christian, S. P. Uwe, G. Mac, F. Peter, R. Jonas, E. Peder, L. Jesper, and J. Leo, the DAN-AERO MW Experiments Final Report (Danmarks Tekniske Universitet, 2010).Google Scholar
  36. 36.
    Y. Li, J. H. Yi, H. Song, Q. Wang, Z. Yang, N. D. Kelley, and K. S. Lee, Appl. Phys. Lett. 105, 023902 (2014).ADSCrossRefGoogle Scholar
  37. 37.
    Q. Li, T. Maeda, Y. Kamada, and N. Mori, Energy 134, 482 (2017).CrossRefGoogle Scholar
  38. 38.
    R. N. Li, S. K. Yuan, L. J. Wei, D. S. Li, and Y. R. Li, J. Exp. Fluid. Mech. 26, 52 (2012).Google Scholar
  39. 39.
    D. S. Li, R. N. Li, X. Y. Wang, L. J. Wei, Y. R. Li, Y. Qiang, and Z. Q. Liu, Appl. Mech. Mater. 34, 1073 (2013).CrossRefGoogle Scholar
  40. 40.
    D. S. Li, Y. R. Li, R. N. Li, S. J. Liu, Y. Li, and W. R. Hu, Sci. China Phys. Mech. Astron. 46, 124706 (2016).ADSGoogle Scholar
  41. 41.
    Z. Zheng, Z. T. Gao, D. S. Li, R. N. Li, Y. Li, Q. H. Hu, and W. R. Hu, Sci. China Phys. Mech. Astron. http://doi.org/10.1007/s11433-018-9214-1 (2018).Google Scholar
  42. 42.
    J. Smagorinsky, Mon. Wea. Rev. 91, 99 (1963).ADSCrossRefGoogle Scholar
  43. 43.
    P. M. O. Gebraad, F. W. Teeuwisse, J. W. van Wingerden, P. A. Fleming, S. D. Ruben, J. R. Marden, and L. Y. Pao, in the American Control Conference (ACC) (IEEE, Portland, 2014), pp. 3128–3134.Google Scholar
  44. 44.
    J. Wang, Sci. Atmosp. Sin. 16, 11 (1992).Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Energy and Power EngineeringLanzhou University of TechnologyLanzhouChina
  2. 2.Gansu Provincial Technology Centre for Wind TurbinesLanzhouChina
  3. 3.Key Laboratory of Fluid Machinery and SystemsLanzhouChina
  4. 4.School of Naval Architecture, Ocean and Civil EngineeringShanghai Jiao Tong UniversityShanghaiChina
  5. 5.State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil EngineeringShanghai Jiao Tong UniversityShanghaiChina
  6. 6.Collaborative Innovation Center for Advanced Ship and Deep-Sea ExplorationShanghai Jiao Tong UniversityShanghaiChina
  7. 7.Institute of MechanicsChinese Academy of SciencesBeijingChina

Personalised recommendations