Advertisement

Interaction between the atmospheric boundary layer and a stand-alone wind turbine in Gansu—Part II: Numerical analysis

  • Zhi Zheng
  • ZhiTeng Gao
  • DeShun Li
  • RenNian LiEmail author
  • Ye LiEmail author
  • QiuHao Hu
  • WenRui HuEmail author
Article

Abstract

To analyze the interaction between wind turbines and the atmospheric boundary layer, we integrated a large-eddy simulation with an actuator line model and examined the characteristics of wind-turbine loads and wakes with reference to a corresponding experiment in Gansu. In the simulation, we set the wind turbine to have a rotor diameter of 14.8 m and a tower height of 15.4 m in the center of an atmospheric boundary layer with a 10.6° yaw angle. The results reveal an obviously skewed wake structure behind the rotor due to the thrust component normal to the flow direction. The power spectra of the inflow fluctuation velocity exhibit a region of −5/3 slope, which confirms the ability of large-eddy simulations to reproduce the energy cascade from larger to smaller scales. We found there to be more energy in the power spectrum of the axial velocity, which shows that coherent turbulence structures have more energy in the horizontal direction. By the conjoint analysis of atmospheric turbulence and windturbine loads, we found that when the inflow wind direction changes rapidly, the turbulence kinetic energy and coherent turbulence kinetic energy in the atmospheric turbulence increase, which in turn causes fluctuations in the wind turbine load. Furthermore, anisotropic atmospheric turbulence causes an asymmetric load cycle, which imposes a strike by the turbine blade on the shaft, thereby increasing the fatigue load on the shaft. Our main conclusion is that the atmospheric boundary layer has a strong effect on the evolution of the wake and the structural response of the turbine.

Keywords

wind power atmospheric turbulence effects finite volume methods large-eddy simulations 

References

  1. 1.
    R. Vautard, F. Thais, I. Tobin, F. M. Bréon, J. G. Devezeaux de Lavergne, A. Colette, P. Yiou, and P. M. Ruti, Nat. Commun. 5, 3196 (2014).CrossRefGoogle Scholar
  2. 2.
    J. D. Mirocha, B. Kosovic, M. L. Aitken, and J. K. Lundquist, J. Renew. Sustain. Energy 6, 013104 (2014).CrossRefGoogle Scholar
  3. 3.
    M. Z. Jacobson, C. L. Archer, and W. Kempton, Nat. Clim Change 4, 195 (2014).CrossRefGoogle Scholar
  4. 4.
    H. Lu, and F. Porté-Agel, Phys. Fluids 23, 065101 (2011).CrossRefGoogle Scholar
  5. 5.
    S. B. Roy, S. W. Pacala, and R. L. Walko, J. Geophys. Res. 109, D19101 (2004).CrossRefGoogle Scholar
  6. 6.
    S. Shamsoddin, and F. Porté-Agel, Bound.-Layer Meteorol. 163, 1 (2017).CrossRefGoogle Scholar
  7. 7.
    L. P. Chamorro, and F. Porté-Agel, Bound.-Layer Meteorol. 136, 515 (2010).CrossRefGoogle Scholar
  8. 8.
    M. A. Carper, and F. Porté-Agel, Bound.-Layer Meteorol. 126, 157 (2007).CrossRefGoogle Scholar
  9. 9.
    M. A. Carper, and F. Porté-Agel, Bound.-Layer Meteorol. 127, 73 (2008).CrossRefGoogle Scholar
  10. 10.
    M. Bastankhah, and F. Porté-Agel, Energies 10, 908 (2017).CrossRefGoogle Scholar
  11. 11.
    M. J. Churchfield, S. Lee, J. Michalakes, and P. J. Moriarty, J. Turbul 13, N14 (2012).CrossRefGoogle Scholar
  12. 12.
    G. España, S. Aubrun, S. Loyer, and P. Devinant, J. Wind Eng. Industrial Aerodyn. 101, 24 (2012).CrossRefGoogle Scholar
  13. 13.
    S. Shamsoddin, and F. Porté-Agel, J. Fluid Mech. 837, R3 (2018).CrossRefGoogle Scholar
  14. 14.
    R. E. Keck, M. de Maré, M. J. Churchfield, S. Lee, G. Larsen, and H. Aagaard Madsen, Wind Energ. 17, 1689 (2015).CrossRefGoogle Scholar
  15. 15.
    M. Abkar, and F. Porté-Agel, Phys. Fluids 27, 035104 (2015).CrossRefGoogle Scholar
  16. 16.
    J. Hong, M. Toloui, L. P. Chamorro, M. Guala, K. Howard, S. Riley, J. Tucker, and F. Sotiropoulos, Nat. Commun. 5, 4216 (2014).CrossRefGoogle Scholar
  17. 17.
    M. S. Adaramola, and P. Å. Krogstad, Renew. Energy 36, 2078 (2011).CrossRefGoogle Scholar
  18. 18.
    L. A. Martínez-Tossas, M. J. Churchfield, and S. Leonardi, Wind Energ. 18, 1047 (2015).CrossRefGoogle Scholar
  19. 19.
    K. Nilsson, S. Ivanell, K. S. Hansen, R. Mikkelsen, J. N. Sørensen, S. P. Breton, and D. Henningson, Wind Energ. 18, 449 (2015).CrossRefGoogle Scholar
  20. 20.
    C. Q. Liu, and X. S. Cai, Sci. China-Phys. Mech. Astron. 60, 084731 (2017).CrossRefGoogle Scholar
  21. 21.
    Y. Q. Wang, and C. Q. Liu, Sci. China-Phys. Mech. Astron. 60, 114712 (2017).CrossRefGoogle Scholar
  22. 22.
    Q. Hu, Y. Li, Y. Di, and J. Chen, J. Renew. Sustain. Energy 9, 064501 (2017).CrossRefGoogle Scholar
  23. 23.
    G. Wang, and X. Zheng, J. Fluid Mech. 802, 464 (2016).CrossRefGoogle Scholar
  24. 24.
    L. J. Vermeer, J. N. Sørensen, and A. Crespo, Prog. Aerosp. Sci. 39, 467 (2003).CrossRefGoogle Scholar
  25. 25.
    F. Porté-Agel, Y. T. Wu, H. Lu, and R. J. Conzemius, J. Wind Eng. Ind. Aerodyn. 99, 154 (2011).CrossRefGoogle Scholar
  26. 26.
    M. Calaf, C. Meneveau, and J. Meyers, Phys. Fluids 22, 015110 (2010).CrossRefGoogle Scholar
  27. 27.
    A. Jimenez, A. Crespo, E. Migoya, and J. Garcia, Environ. Res. Lett. 3, 015004 (2008).CrossRefGoogle Scholar
  28. 28.
    N. Marjanovic, J. D. Mirocha, B. Kosovic, J. K. Lundquist, and F. K. Chow, J. Renew. Sustain. Energy 9, 063308 (2017).CrossRefGoogle Scholar
  29. 29.
    L. A. Martínez-Tossas, M. J. Churchfield, and C. Meneveau, Wind Energ. 20, 1083 (2017).CrossRefGoogle Scholar
  30. 30.
    M. Shives, and C. Crawford, Renew. Energy 92, 273 (2016).CrossRefGoogle Scholar
  31. 31.
    M. F. Howland, J. Bossuyt, L. A. Martínez-Tossas, J. Meyers, and C. Meneveau, J. Renew. Sustain. Energy 8, 043301 (2016).CrossRefGoogle Scholar
  32. 32.
    J. N. Sørensen, and W. Z. Shen, J. Fluids Eng. 124, 393 (2002).CrossRefGoogle Scholar
  33. 33.
    N. Troldborg, J. N. Sørensen, and R. Mikkelsen, J. Phys.-Conf. Ser. 75, 012063 (2007).CrossRefGoogle Scholar
  34. 34.
    D. Li, T. Guo, Y. Li, J. Hu, Z. Zheng, Y. Li, Y. Di, W. Hu, and R. Li, Sci. China-Phys. Mech. Astron. doi: 10.1007/s11433-018-9219-y.Google Scholar
  35. 35.
    A. S. Ghate, and S. K. Lele, J. Fluid Mech. 819, 494 (2017).MathSciNetCrossRefGoogle Scholar
  36. 36.
    N. Troldborg, Actuator Line Modeling of Wind Turbine Wakes, Dissertation for the Doctoral Degree (Technical University of Denmark, Denmark, 2009), p. 13.Google Scholar
  37. 37.
    C. H. Moeng, J. Atmos. Sci. 41, 2052 (1984).CrossRefGoogle Scholar
  38. 38.
    C. M. Rhie, and W. L. Chow, AIAA J. 21, 1525 (1983).CrossRefGoogle Scholar
  39. 39.
    I. H. Abbott, and A. E. Von Doenhoff, Theory of Wing Sections. Including a Summary of Airfoil Data (Dover, NewYork, 1959).Google Scholar
  40. 40.
    L. A. Viterna, and R. D. Corrigan, Fixed Pitch Rotor Performance of Large Horizontal Axis Wind Turbines, Technical Report (NASA, 1982).Google Scholar
  41. 41.
    P. K. Kundu, and I. M. Cohen, Fluid Mechanics (Elsevier, Burlington, 2010), pp. 541–564.Google Scholar
  42. 42.
    R. P. Coleman, A. M. Feingold, and C. W. Stempin, Evaluation of the Induced-Velocity Field of an Idealized Helicoptor Rotor, Technical Report (NASA, 1945).Google Scholar
  43. 43.
    J. M. Jonkman, and M. L. Buhl, FAST User’s Guide, Technical Report (NREL, 2005).Google Scholar
  44. 44.
    Y. Li, J. H. Yi, H. Song, Q. Wang, Z. Yang, N. D. Kelley, and K. S. Lee, Appl. Phys. Lett. 105, 023902 (2014).CrossRefGoogle Scholar
  45. 45.
    B. J. Jonkman, TurbSim User’s Guide, Technical Report (NREL, 2009).Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Energy and Power EngineeringLanzhou University of TechnologyLanzhouChina
  2. 2.Gansu Provincial Technology Centre for Wind TurbinesLanzhouChina
  3. 3.Key Laboratory of Fluid Machinery and SystemsLanzhouChina
  4. 4.School of Naval Architecture, Ocean and Civil EngineeringShanghai Jiao Tong UniversityShanghaiChina
  5. 5.Institute of MechanicsChinese Academy of SciencesBeijingChina

Personalised recommendations