Advertisement

Primordial magnetic fields from gravitationally coupled electrodynamics in nonsingular bounce cosmology

  • JieWen Chen
  • ChongHuan Li
  • YuBin Li
  • Mian ZhuEmail author
Article
  • 19 Downloads

Abstract

We in this paper study a class of mechanism of the production of the primordial magnetic field (PMF) in the non-singular bouncing cosmology, through the coupling of the electromagnetic field to gravity. We adopt an electrodynamic model with a coupling coefficient as a function of the scale factor a, i.e., f = 1 + (a/a)n, with a and n > 0 being constants. With analytical calculations, we find that this model can yield a blue tilted power spectrum of PMF on large scales from 1 Mpc to the Hubble length if the bounce scenario has experienced a contracting phase with an equation-of-state parameter larger than −1/3. Furthermore, in order to satisfy the constraints of observational data, the present mechanism favors the so-called ekpyrotic-bounce paradigm. The back-reaction of the energy density of PMF at the bouncing point can lead to additional theoretical constraints on the underlying bouncing paradigm.

Keywords

primordial magnetic field bounce cosmology gravitationally coupled electrodynamics 

References

  1. 1.
    A. Neronov, and I. Vovk, Science 328, 73 (2010), arXiv: 1006.3504.ADSCrossRefGoogle Scholar
  2. 2.
    A. M. Taylor, I. Vovk, and A. Neronov, Astron. Astrophys. 529, A144 (2011), arXiv: 1101.0932.ADSCrossRefGoogle Scholar
  3. 3.
    P. P. Kronberg, Rep. Prog. Phys. 57, 325 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    D. Grasso, and H. R. Rubinstein, Phys. Rep. 348, 163 (2001), arXiv: astro-ph/0009061.ADSCrossRefGoogle Scholar
  5. 5.
    A. D. Dolgov, arXiv: hep-ph/0110293.Google Scholar
  6. 6.
    L. M. Widrow, Rev. Mod. Phys. 74, 775 (2002), arXiv: 0207240.ADSCrossRefGoogle Scholar
  7. 7.
    R. M. Kulsrud, and E. G. Zweibel, Rep. Prog. Phys. 71, 046901 (2008), arXiv: 0707.2783.ADSCrossRefGoogle Scholar
  8. 8.
    L. Campanelli, Phys. Rev. Lett. 111, 061301 (2013), arXiv: 1304.6534.ADSCrossRefGoogle Scholar
  9. 9.
    K. Subramanian, Rep. Prog. Phys. 79, 076901 (2016), arXiv: 1504.02311.ADSCrossRefGoogle Scholar
  10. 10.
    P. A. R. Ade, et al. (Planck Collaboration), Astron. Astrophys. 594, A19 (2016), arXiv: 1502.01594.CrossRefGoogle Scholar
  11. 11.
    A. Zucca, Y. Li, and L. Pogosian, Phys. Rev. D 95, 063506 (2017), arXiv: 1611.00757.ADSCrossRefGoogle Scholar
  12. 12.
    F. Tavecchio, G. Ghisellini, L. Foschini, G. Bonnoli, G. Ghirlanda, and P. Coppi, Mon. Not. R. Astron. Soc.-Lett. 700, L70 (2010), arXiv: 1004.1329.ADSGoogle Scholar
  13. 13.
    K. Dolag, M. Kachelriess, S. Ostapchenko, and R. Tomás, Astrophys. J. 727, L4 (2011), arXiv: 1009.1782.ADSCrossRefGoogle Scholar
  14. 14.
    C. D. Dermer, M. Cavadini, S. Razzaque, J. D. Finke, J. Chiang, and B. Lott, Astrophys. J. 733, L21 (2011), arXiv: 1011.6660.ADSCrossRefGoogle Scholar
  15. 15.
    R. A. Batista, A. Saveliev, G. Sigl, and T. Vachaspati, Phys. Rev. D 94, 083005 (2016), arXiv: 1607.00320.ADSCrossRefGoogle Scholar
  16. 16.
    I. Vovk, A. M. Taylor, D. Semikoz, and A. Neronov, Astrophys. J. 747, L14 (2012), arXiv: 1112.2534.ADSCrossRefGoogle Scholar
  17. 17.
    J. D. Finke, L. C. Reyes, M. Georganopoulos, K. Reynolds, M. Ajello, S. J. Fegan, and K. McCann, Astrophys. J. 814, 20 (2015), arXiv: 1510.02485.ADSCrossRefGoogle Scholar
  18. 18.
    L. Parker, Phys. Rev. Lett. 21, 562 (1968).ADSCrossRefGoogle Scholar
  19. 19.
    J. Martin, and J. Yokoyama, J. Cosmol. Astropart. Phys. 2008, 025 (2008), arXiv: 0711.4307.CrossRefGoogle Scholar
  20. 20.
    V. Demozzi, V. Mukhanov, and H. Rubinstein, J. Cosmol. Astropart. Phys. 2009, 025 (2009), arXiv: 0907.1030.CrossRefGoogle Scholar
  21. 21.
    M. Giovannini, Eur. Phys. J. C 77, 522 (2017), arXiv: 1706.09824.ADSCrossRefGoogle Scholar
  22. 22.
    M. S. Turner, and L. M. Widrow, Phys. Rev. D 37, 2743 (1988).ADSCrossRefGoogle Scholar
  23. 23.
    A. D. Dolgov, Phys. Rev. D 48, 2499 (1993), arXiv: hep-ph/9301280.ADSCrossRefGoogle Scholar
  24. 24.
    K. E. Kunze, Phys. Rev. D 81, 043526 (2010), arXiv: 0911.1101.ADSCrossRefGoogle Scholar
  25. 25.
    K. E. Kunze, Phys. Rev. D 87, 063505 (2013), arXiv: 1210.6899.ADSCrossRefGoogle Scholar
  26. 26.
    J. B. Jiménez, and A. L. Maroto, J. Cosmol. Astropart. Phys. 2010, 025 (2010), arXiv: 1010.4513.CrossRefGoogle Scholar
  27. 27.
    J. B. Jiménez, and A. L. Maroto, Phys. Rev. D 83, 023514 (2011), arXiv: 1010.3960.CrossRefGoogle Scholar
  28. 28.
    P. Qian, and Z. K. Guo, Phys. Rev. D 93, 043541 (2016), arXiv: 1512.05050.ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    D. Nandi, and S. Shankaranarayanan, J. Cosmol. Astropart. Phys. 2018, 039 (2018), arXiv: 1704.06897.CrossRefGoogle Scholar
  30. 30.
    B. Ratra, Astrophys. J. 391, L1 (1992).ADSCrossRefGoogle Scholar
  31. 31.
    R. J. Z. Ferreira, R. K. Jain, and M. S. Sloth, J. Cosmol. Astropart. Phys. 2013, 004 (2013), arXiv: 1305.7151.CrossRefGoogle Scholar
  32. 32.
    L. Campanelli, Mod. Phys. Lett. A 31, 1650165 (2016), arXiv: 1508.01247.ADSCrossRefGoogle Scholar
  33. 33.
    W. D. Garretson, G. B. Field, and S. M. Carroll, Phys. Rev. D 46, 5346 (1992), arXiv: hep-ph/9209238.ADSCrossRefGoogle Scholar
  34. 34.
    F. Finelli, and A. Gruppuso, Phys. Lett. B 502, 216 (2001), arXiv: hep-ph/0001231.ADSCrossRefGoogle Scholar
  35. 35.
    L. Campanelli, Int. J. Mod. Phys. D 18, 1395 (2009), arXiv: 0805.0575.ADSCrossRefGoogle Scholar
  36. 36.
    P. Qian, Y. F. Cai, D. A. Easson, and Z. K. Guo, Phys. Rev. D 94, 083524 (2016), arXiv: 1607.06578.ADSCrossRefGoogle Scholar
  37. 37.
    T. Markkanen, S. Nurmi, S. Räsänen, and V. Vennin, J. Cosmol. Astropart. Phys. 2017, 035 (2017), arXiv: 1704.01343.CrossRefGoogle Scholar
  38. 38.
    R. Sharma, S. Jagannathan, T. R. Seshadri, and K. Subramanian, Phys. Rev. D 96, 083511 (2017), arXiv: 1708.08119.ADSCrossRefGoogle Scholar
  39. 39.
    H. B. Moghaddam, E. McDonough, R. Namba, and R. H. Brandenberger, arXiv: 1707.05820.Google Scholar
  40. 40.
    K. Subramanian, Astron. Nachr. 331, 110 (2010), arXiv: 0911.4771.ADSCrossRefGoogle Scholar
  41. 41.
    F. A. Membiela, Nucl. Phys. B 885, 196 (2014), arXiv: 1312.2162.ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    L. Sriramkumar, K. Atmjeet, and R. K. Jain, J. Cosmol. Astropart. Phys. 2015, 010 (2015), arXiv: 1504.06853.CrossRefGoogle Scholar
  43. 43.
    D. Chowdhury, L. Sriramkumar, and R. K. Jain, Phys. Rev. D 94, 083512 (2016), arXiv: 1604.02143.ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    M. Gasperini, M. Giovannini, and G. Veneziano, Phys. Rev. Lett. 75, 3796 (1995), arXiv: hep-th/9504083.ADSCrossRefGoogle Scholar
  45. 45.
    K. Bamba, and J. Yokoyama, Phys. Rev. D 69, 043507 (2004), arXiv: astro-ph/0310824.ADSCrossRefGoogle Scholar
  46. 46.
    K. Bamba, and J. Yokoyama, Phys. Rev. D 69, 043507 (2004), arXiv: astro-ph/0611701.ADSCrossRefGoogle Scholar
  47. 47.
    E. A. Calzetta, A. Kandus, and F. D. Mazzitelli, Phys. Rev. D 57, 7139 (1998), arXiv: astro-ph/9707220.ADSCrossRefGoogle Scholar
  48. 48.
    A. Kandus, E. A. Calzetta, F. D. Mazzitelli, and C. E. M. Wagner, Phys. Lett. B 472, 287 (2000), arXiv: hep-ph/9908524.ADSCrossRefGoogle Scholar
  49. 49.
    D. Wands, Phys. Rev. D 60, 023507 (1999), arXiv: gr-qc/9809062.ADSCrossRefGoogle Scholar
  50. 50.
    F. Finelli, and R. Brandenberger, Phys. Rev. D 65, 103522 (2002), arXiv: hep-th/0112249.ADSCrossRefGoogle Scholar
  51. 51.
    J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, Phys. Rev. D 64, 123522 (2001), arXiv: hep-th/0103239.ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, Phys. Rev. D 66, 046005 (2002), arXiv: hep-th/0109050.ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    M. Novello, and S. Bergliaffa, Phys. Rep. 463, 127 (2008), arXiv: 0802.1634.ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    J. L. Lehners, Phys. Rep. 465, 223 (2008), arXiv: 0806.1245.ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    R. H. Brandenberger, Int. J. Mod. Phys. Conf. Ser. 01, 67 (2011), arXiv: 0902.4731.CrossRefGoogle Scholar
  56. 56.
    R. H. Brandenberger, arXiv: 1206.4196.Google Scholar
  57. 57.
    Y. F. Cai, D. A. Easson, and R. Brandenberger, J. Cosmol. Astropart. Phys. 2012, 020 (2012), arXiv: 1206.2382.CrossRefGoogle Scholar
  58. 58.
    Y. F. Cai, Sci. China-Phys. Mech. Astron. 57, 1414 (2014), arXiv: 1405.1369.ADSCrossRefGoogle Scholar
  59. 59.
    D. Battefeld, and P. Peter, Phys. Rep. 571, 1 (2015), arXiv: 1406.2790.ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    R. Brandenberger, and P. Peter, Found Phys 47, 797 (2017), arXiv: 1603.05834.ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    R. Koley, and S. Samtani, J. Cosmol. Astropart. Phys. 2017, 030 (2017), arXiv: 1612.08556.CrossRefGoogle Scholar
  62. 62.
    I. T. Drummond, and S. J. Hathrell, Phys. Rev. D 22, 343 (1980).ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    R. Brandenberger, Phys. Rev. D 80, 043516 (2009), arXiv: 0904.2835.ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    Y. F. Cai, and E. N. Saridakis, J. Cosmol. Astropart. Phys. 2009, 020 (2009), arXiv: 0906.1789.CrossRefGoogle Scholar
  65. 65.
    X. Gao, Y. Wang, W. Xue, and R. Brandenberger, J. Cosmol. Astropart. Phys. 2010, 020 (2010), arXiv: 0911.3196.CrossRefGoogle Scholar
  66. 66.
    Y. F. Cai, S. H. Chen, J. B. Dent, S. Dutta, and E. N. Saridakis, Class. Quantum Grav. 28, 215011 (2011), arXiv: 1104.4349.ADSCrossRefGoogle Scholar
  67. 67.
    J. de Haro, and J. Amoros, Phys. Rev. Lett. 110, 071104 (2013), arXiv: 1211.5336.ADSCrossRefGoogle Scholar
  68. 68.
    Y. F. Cai, S. Capozziello, M. De Laurentis, and E. N. Saridakis, Rep. Prog. Phys. 79, 106901 (2016), arXiv: 1511.07586.ADSCrossRefGoogle Scholar
  69. 69.
    Y. F. Cai, T. Qiu, R. Brandenberger, Y. S. Piao, and X. Zhang, J. Cosmol. Astropart. Phys. 2008, 013 (2008), arXiv: 0711.2187.CrossRefGoogle Scholar
  70. 70.
    Y. F. Cai, and X. Zhang, J. Cosmol. Astropart. Phys. 2009, 003 (2009), arXiv: 0808.2551.CrossRefGoogle Scholar
  71. 71.
    C. Lin, R. H. Brandenberger, and L. P. Levasseur, J. Cosmol. Astropart. Phys. 2011, 019 (2011), arXiv: 1007.2654.CrossRefGoogle Scholar
  72. 72.
    Y. F. Cai, T. Qiu, R. Brandenberger, and X. Zhang, Phys. Rev. D 80, 023511 (2009), arXiv: 0810.4677.ADSCrossRefGoogle Scholar
  73. 73.
    T. Qiu, J. Evslin, Y. F. Cai, M. Li, and X. Zhang, J. Cosmol. Astropart. Phys. 2011, 036 (2011), arXiv: 1108.0593.CrossRefGoogle Scholar
  74. 74.
    D. A. Easson, I. Sawicki, and A. Vikman, J. Cosmol. Astropart. Phys. 2011, 021 (2011), arXiv: 1109.1047.ADSCrossRefGoogle Scholar
  75. 75.
    S. Alexander, C. Bambi, A. Marcianó, and L. Modesto, Phys. Rev. D 90, 123510 (2014), arXiv: 1402.5880.ADSCrossRefGoogle Scholar
  76. 76.
    S. Alexander, Y. F. Cai, and A. Marcianó, Phys. Lett. B 745, 97 (2015), arXiv: 1406.1456.ADSCrossRefGoogle Scholar
  77. 77.
    Y. F. Cai, E. McDonough, F. Duplessis, and R. H. Brandenberger, J. Cosmol. Astropart. Phys. 2013, 024 (2013), arXiv: 1305.5259.CrossRefGoogle Scholar
  78. 78.
    V. A. Belinskii, I. M. Khalatnikov, and E. M. Lifshitz, Adv. Phys. 19, 525 (1970).ADSCrossRefGoogle Scholar
  79. 79.
    Y. B. Li, J. Quintin, D. G. Wang, and Y. F. Cai, J. Cosmol. Astropart. Phys. 2017, 031 (2017), arXiv: 1612.02036.CrossRefGoogle Scholar
  80. 80.
    Y. F. Cai, W. Xue, R. Brandenberger, and X. Zhang, J. Cosmol. Astropart. Phys. 2009, 011 (2009), arXiv: 0903.0631.CrossRefGoogle Scholar
  81. 81.
    L. Battarra, M. Koehn, J. L. Lehners, and B. A. Ovrut, J. Cosmol. Astropart. Phys. 2014, 007 (2014), arXiv: 1404.5067.CrossRefGoogle Scholar
  82. 82.
    J. Quintin, Z. Sherkatghanad, Y. F. Cai, and R. H. Brandenberger, Phys. Rev. D 92, 063532 (2015), arXiv: 1508.04141.ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • JieWen Chen
    • 1
    • 2
  • ChongHuan Li
    • 1
    • 2
    • 3
  • YuBin Li
    • 1
    • 2
    • 4
  • Mian Zhu
    • 1
    • 2
    • 5
    Email author
  1. 1.CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of AstronomyUniversity of Science and Technology of ChinaHefeiChina
  2. 2.School of Astronomy and Space ScienceUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Department of Physics and AstronomyUniversity of UtahSlat Lake City, UtahUSA
  4. 4.Department of PhysicsThe Chinese University of Hong KongHong KongChina
  5. 5.School for Gifted YoungUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations